danhtran2mind's picture
Upload folder using huggingface_hub
df08b89 verified
import tensorflow as tf
from .encoder import Encoder
from .decoder import Decoder
from tensorflow.keras.layers import Dense
@tf.keras.utils.register_keras_serializable()
class Transformer(tf.keras.Model):
def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size,
target_vocab_size, max_tokens, dropout_rate=0.1, **kwargs):
super(Transformer, self).__init__(**kwargs)
self.num_layers = num_layers
self.d_model = d_model
self.num_heads = num_heads
self.dff = dff
self.input_vocab_size = input_vocab_size
self.target_vocab_size = target_vocab_size
self.max_tokens = max_tokens
self.dropout_rate = dropout_rate
self.encoder = Encoder(num_layers, d_model, num_heads, dff,
input_vocab_size, max_tokens, dropout_rate)
self.decoder = Decoder(num_layers, d_model, num_heads, dff,
target_vocab_size, max_tokens, dropout_rate)
self.final_layer = Dense(target_vocab_size)
def call(self, inputs, training=None):
enc_input, dec_input = inputs
enc_padding_mask = self.create_padding_mask(enc_input)
look_ahead_mask = self.create_look_ahead_mask(tf.shape(dec_input)[1])
dec_padding_mask = self.create_padding_mask(enc_input)
enc_output = self.encoder(enc_input, training=training, mask=enc_padding_mask)
dec_output = self.decoder(dec_input, enc_output, training=training,
look_ahead_mask=look_ahead_mask,
padding_mask=dec_padding_mask)
final_output = self.final_layer(dec_output)
return final_output
def create_padding_mask(self, seq):
mask = tf.cast(tf.math.equal(seq, 0), tf.float32)
return mask[:, tf.newaxis, tf.newaxis, :]
def create_look_ahead_mask(self, size):
mask = 1 - tf.linalg.band_part(tf.ones((size, size)), -1, 0)
return mask
def get_config(self):
config = super().get_config()
config.update({
'num_layers': self.num_layers,
'd_model': self.d_model,
'num_heads': self.num_heads,
'dff': self.dff,
'input_vocab_size': self.input_vocab_size,
'target_vocab_size': self.target_vocab_size,
'max_tokens': self.max_tokens,
'dropout_rate': self.dropout_rate
})
return config