Spaces:
Runtime error
Runtime error
Adding plot type selection
Browse files
app.py
CHANGED
|
@@ -1,29 +1,39 @@
|
|
| 1 |
-
import requests
|
| 2 |
import logging
|
|
|
|
|
|
|
|
|
|
| 3 |
import duckdb
|
| 4 |
import numpy as np
|
|
|
|
|
|
|
| 5 |
from torch import cuda
|
| 6 |
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
| 7 |
from bertopic import BERTopic
|
| 8 |
from bertopic.representation import KeyBERTInspired
|
| 9 |
-
|
| 10 |
from cuml.manifold import UMAP
|
| 11 |
from cuml.cluster import HDBSCAN
|
| 12 |
|
| 13 |
from sklearn.feature_extraction.text import CountVectorizer
|
| 14 |
-
|
| 15 |
from sentence_transformers import SentenceTransformer
|
| 16 |
|
| 17 |
from dotenv import load_dotenv
|
| 18 |
-
import os
|
| 19 |
|
|
|
|
| 20 |
# import spaces
|
| 21 |
import gradio as gr
|
| 22 |
|
| 23 |
|
| 24 |
"""
|
| 25 |
TODOs:
|
| 26 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
"""
|
| 28 |
|
| 29 |
load_dotenv()
|
|
@@ -137,7 +147,7 @@ def fit_model(docs, embeddings, n_neighbors, n_components):
|
|
| 137 |
logging.info("Global model updated")
|
| 138 |
|
| 139 |
|
| 140 |
-
def generate_topics(dataset, config, split, column, nested_column):
|
| 141 |
logging.info(
|
| 142 |
f"Generating topics for {dataset} with config {config} {split} {column} {nested_column}"
|
| 143 |
)
|
|
@@ -202,12 +212,65 @@ def generate_topics(dataset, config, split, column, nested_column):
|
|
| 202 |
reduced_embeddings_list.append(reduced_embeddings)
|
| 203 |
|
| 204 |
all_docs.extend(docs)
|
|
|
|
| 205 |
|
| 206 |
topics_info = base_model.get_topic_info()
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
)
|
| 212 |
|
| 213 |
rows_processed += len(docs)
|
|
@@ -228,6 +291,7 @@ def generate_topics(dataset, config, split, column, nested_column):
|
|
| 228 |
offset += CHUNK_SIZE
|
| 229 |
|
| 230 |
logging.info("Finished processing all data")
|
|
|
|
| 231 |
yield (
|
| 232 |
topics_info,
|
| 233 |
topic_plot,
|
|
@@ -271,7 +335,12 @@ with gr.Blocks() as demo:
|
|
| 271 |
nested_text_column_dropdown = gr.Dropdown(
|
| 272 |
label="Nested text column name", visible=False
|
| 273 |
)
|
| 274 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
generate_button = gr.Button("Generate Topics", variant="primary")
|
| 276 |
|
| 277 |
gr.Markdown("## Data map")
|
|
@@ -287,8 +356,13 @@ with gr.Blocks() as demo:
|
|
| 287 |
split_dropdown,
|
| 288 |
text_column_dropdown,
|
| 289 |
nested_text_column_dropdown,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 290 |
],
|
| 291 |
-
outputs=[topics_df, topics_plot, full_topics_generation_label],
|
| 292 |
)
|
| 293 |
|
| 294 |
def _resolve_dataset_selection(
|
|
|
|
|
|
|
| 1 |
import logging
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
import datamapplot
|
| 5 |
import duckdb
|
| 6 |
import numpy as np
|
| 7 |
+
import requests
|
| 8 |
+
|
| 9 |
from torch import cuda
|
| 10 |
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
| 11 |
from bertopic import BERTopic
|
| 12 |
from bertopic.representation import KeyBERTInspired
|
|
|
|
| 13 |
from cuml.manifold import UMAP
|
| 14 |
from cuml.cluster import HDBSCAN
|
| 15 |
|
| 16 |
from sklearn.feature_extraction.text import CountVectorizer
|
|
|
|
| 17 |
from sentence_transformers import SentenceTransformer
|
| 18 |
|
| 19 |
from dotenv import load_dotenv
|
|
|
|
| 20 |
|
| 21 |
+
# These imports at the end because of torch/datamapplot issue in Zero GPU
|
| 22 |
# import spaces
|
| 23 |
import gradio as gr
|
| 24 |
|
| 25 |
|
| 26 |
"""
|
| 27 |
TODOs:
|
| 28 |
+
- Hide params panel when generating plot
|
| 29 |
+
|
| 30 |
+
- Improve DataMapPlot plot arguments
|
| 31 |
+
- Add export button for final plot
|
| 32 |
+
- Export and serve an interactive HTML plot?
|
| 33 |
+
- Try with more rows
|
| 34 |
+
|
| 35 |
+
- Add TextGenerationLayer
|
| 36 |
+
- Make it run on Zero GPU
|
| 37 |
"""
|
| 38 |
|
| 39 |
load_dotenv()
|
|
|
|
| 147 |
logging.info("Global model updated")
|
| 148 |
|
| 149 |
|
| 150 |
+
def generate_topics(dataset, config, split, column, nested_column, plot_type):
|
| 151 |
logging.info(
|
| 152 |
f"Generating topics for {dataset} with config {config} {split} {column} {nested_column}"
|
| 153 |
)
|
|
|
|
| 212 |
reduced_embeddings_list.append(reduced_embeddings)
|
| 213 |
|
| 214 |
all_docs.extend(docs)
|
| 215 |
+
reduced_embeddings_array = np.vstack(reduced_embeddings_list)
|
| 216 |
|
| 217 |
topics_info = base_model.get_topic_info()
|
| 218 |
+
all_topics, _ = base_model.transform(all_docs)
|
| 219 |
+
all_topics = np.array(all_topics)
|
| 220 |
+
# topic_plot, _ = datamapplot.create_plot(
|
| 221 |
+
# data_map_coords=reduced_embeddings_array,
|
| 222 |
+
# labels=all_topics.astype(str),
|
| 223 |
+
# use_medoids=True,
|
| 224 |
+
# figsize=(12, 12),
|
| 225 |
+
# dpi=100,
|
| 226 |
+
# title="PubMed - Literature review",
|
| 227 |
+
# sub_title="A data map of papers representing artificial intelligence and machine learning in ophthalmology",
|
| 228 |
+
# title_keywords={"fontsize": 36, "fontfamily": "Roboto Black"},
|
| 229 |
+
# sub_title_keywords={
|
| 230 |
+
# "fontsize": 18,
|
| 231 |
+
# },
|
| 232 |
+
# highlight_label_keywords={
|
| 233 |
+
# "fontsize": 12,
|
| 234 |
+
# "fontweight": "bold",
|
| 235 |
+
# "bbox": {"boxstyle": "round"},
|
| 236 |
+
# },
|
| 237 |
+
# label_font_size=8,
|
| 238 |
+
# label_wrap_width=16,
|
| 239 |
+
# label_linespacing=1.25,
|
| 240 |
+
# label_direction_bias=1.3,
|
| 241 |
+
# label_margin_factor=2.0,
|
| 242 |
+
# label_base_radius=15.0,
|
| 243 |
+
# point_size=4,
|
| 244 |
+
# marker_type="o",
|
| 245 |
+
# arrowprops={
|
| 246 |
+
# "arrowstyle": "wedge,tail_width=0.5",
|
| 247 |
+
# "connectionstyle": "arc3,rad=0.05",
|
| 248 |
+
# "linewidth": 0,
|
| 249 |
+
# "fc": "#33333377",
|
| 250 |
+
# },
|
| 251 |
+
# add_glow=True,
|
| 252 |
+
# glow_keywords={
|
| 253 |
+
# "kernel_bandwidth": 0.75, # controls how wide the glow spreads.
|
| 254 |
+
# "kernel": "cosine", # controls the kernel type. Default is "gaussian". See https://scikit-learn.org/stable/modules/density.html#kernel-density.
|
| 255 |
+
# "n_levels": 32, # controls how many "levels" there are in the contour plot.
|
| 256 |
+
# "max_alpha": 0.9, # controls the translucency of the glow.
|
| 257 |
+
# },
|
| 258 |
+
# darkmode=False,
|
| 259 |
+
# )
|
| 260 |
+
|
| 261 |
+
topic_plot = (
|
| 262 |
+
base_model.visualize_document_datamap(
|
| 263 |
+
docs=all_docs,
|
| 264 |
+
reduced_embeddings=reduced_embeddings_array,
|
| 265 |
+
title=f"<b>{dataset}</b>",
|
| 266 |
+
)
|
| 267 |
+
if plot_type == "DataMapPlot"
|
| 268 |
+
else base_model.visualize_documents(
|
| 269 |
+
docs=all_docs,
|
| 270 |
+
reduced_embeddings=reduced_embeddings_array,
|
| 271 |
+
custom_labels=True,
|
| 272 |
+
title=f"<b>{dataset}</b>",
|
| 273 |
+
)
|
| 274 |
)
|
| 275 |
|
| 276 |
rows_processed += len(docs)
|
|
|
|
| 291 |
offset += CHUNK_SIZE
|
| 292 |
|
| 293 |
logging.info("Finished processing all data")
|
| 294 |
+
|
| 295 |
yield (
|
| 296 |
topics_info,
|
| 297 |
topic_plot,
|
|
|
|
| 335 |
nested_text_column_dropdown = gr.Dropdown(
|
| 336 |
label="Nested text column name", visible=False
|
| 337 |
)
|
| 338 |
+
plot_type_radio = gr.Radio(
|
| 339 |
+
["DataMapPlot", "Plotly"],
|
| 340 |
+
value="Plotly",
|
| 341 |
+
label="Choose the plot type",
|
| 342 |
+
interactive=True,
|
| 343 |
+
)
|
| 344 |
generate_button = gr.Button("Generate Topics", variant="primary")
|
| 345 |
|
| 346 |
gr.Markdown("## Data map")
|
|
|
|
| 356 |
split_dropdown,
|
| 357 |
text_column_dropdown,
|
| 358 |
nested_text_column_dropdown,
|
| 359 |
+
plot_type_radio,
|
| 360 |
+
],
|
| 361 |
+
outputs=[
|
| 362 |
+
topics_df,
|
| 363 |
+
topics_plot,
|
| 364 |
+
full_topics_generation_label,
|
| 365 |
],
|
|
|
|
| 366 |
)
|
| 367 |
|
| 368 |
def _resolve_dataset_selection(
|