Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import logging
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from huggingface_hub import hf_hub_download
|
| 5 |
+
|
| 6 |
+
# Install necessary libraries using os.system
|
| 7 |
+
os.system("pip install --upgrade pip")
|
| 8 |
+
os.system("pip install llama-cpp-agent huggingface_hub trafilatura beautifulsoup4 requests duckduckgo-search googlesearch-python")
|
| 9 |
+
|
| 10 |
+
# Attempt to import all required modules
|
| 11 |
+
try:
|
| 12 |
+
from llama_cpp import Llama
|
| 13 |
+
from llama_cpp_agent.providers import LlamaCppPythonProvider
|
| 14 |
+
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
|
| 15 |
+
from llama_cpp_agent.chat_history import BasicChatHistory
|
| 16 |
+
from llama_cpp_agent.chat_history.messages import Roles
|
| 17 |
+
from llama_cpp_agent.llm_output_settings import (
|
| 18 |
+
LlmStructuredOutputSettings,
|
| 19 |
+
LlmStructuredOutputType,
|
| 20 |
+
)
|
| 21 |
+
from llama_cpp_agent.tools import WebSearchTool
|
| 22 |
+
from llama_cpp_agent.prompt_templates import web_search_system_prompt, research_system_prompt
|
| 23 |
+
from utils import CitingSources
|
| 24 |
+
from settings import get_context_by_model, get_messages_formatter_type
|
| 25 |
+
except ImportError as e:
|
| 26 |
+
raise ImportError(f"Error importing modules: {e}")
|
| 27 |
+
|
| 28 |
+
# Download the models
|
| 29 |
+
hf_hub_download(
|
| 30 |
+
repo_id="bartowski/Mistral-7B-Instruct-v0.3-GGUF",
|
| 31 |
+
filename="Mistral-7B-Instruct-v0.3-Q6_K.gguf",
|
| 32 |
+
local_dir="./models"
|
| 33 |
+
)
|
| 34 |
+
hf_hub_download(
|
| 35 |
+
repo_id="bartowski/Meta-Llama-3-8B-Instruct-GGUF",
|
| 36 |
+
filename="Meta-Llama-3-8B-Instruct-Q6_K.gguf",
|
| 37 |
+
local_dir="./models"
|
| 38 |
+
)
|
| 39 |
+
hf_hub_download(
|
| 40 |
+
repo_id="TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF",
|
| 41 |
+
filename="mixtral-8x7b-instruct-v0.1.Q5_K_M.gguf",
|
| 42 |
+
local_dir="./models"
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
# Function to respond to user messages
|
| 46 |
+
def respond(message, temperature, top_p, top_k, repeat_penalty):
|
| 47 |
+
try:
|
| 48 |
+
model = "mixtral-8x7b-instruct-v0.1.Q5_K_M.gguf"
|
| 49 |
+
max_tokens = 3000
|
| 50 |
+
chat_template = get_messages_formatter_type(model)
|
| 51 |
+
llm = Llama(
|
| 52 |
+
model_path=f"models/{model}",
|
| 53 |
+
flash_attn=True,
|
| 54 |
+
n_gpu_layers=81,
|
| 55 |
+
n_batch=1024,
|
| 56 |
+
n_ctx=get_context_by_model(model),
|
| 57 |
+
)
|
| 58 |
+
provider = LlamaCppPythonProvider(llm)
|
| 59 |
+
logging.info(f"Loaded chat examples: {chat_template}")
|
| 60 |
+
search_tool = WebSearchTool(
|
| 61 |
+
llm_provider=provider,
|
| 62 |
+
message_formatter_type=chat_template,
|
| 63 |
+
max_tokens_search_results=12000,
|
| 64 |
+
max_tokens_per_summary=2048,
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
web_search_agent = LlamaCppAgent(
|
| 68 |
+
provider,
|
| 69 |
+
system_prompt=web_search_system_prompt,
|
| 70 |
+
predefined_messages_formatter_type=chat_template,
|
| 71 |
+
debug_output=True,
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
answer_agent = LlamaCppAgent(
|
| 75 |
+
provider,
|
| 76 |
+
system_prompt=research_system_prompt,
|
| 77 |
+
predefined_messages_formatter_type=chat_template,
|
| 78 |
+
debug_output=True,
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
settings = provider.get_provider_default_settings()
|
| 82 |
+
settings.stream = False
|
| 83 |
+
settings.temperature = temperature
|
| 84 |
+
settings.top_k = top_k
|
| 85 |
+
settings.top_p = top_p
|
| 86 |
+
settings.max_tokens = max_tokens
|
| 87 |
+
settings.repeat_penalty = repeat_penalty
|
| 88 |
+
|
| 89 |
+
output_settings = LlmStructuredOutputSettings.from_functions(
|
| 90 |
+
[search_tool.get_tool()]
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
messages = BasicChatHistory()
|
| 94 |
+
|
| 95 |
+
result = web_search_agent.get_chat_response(
|
| 96 |
+
message,
|
| 97 |
+
llm_sampling_settings=settings,
|
| 98 |
+
structured_output_settings=output_settings,
|
| 99 |
+
add_message_to_chat_history=False,
|
| 100 |
+
add_response_to_chat_history=False,
|
| 101 |
+
print_output=False,
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
outputs = ""
|
| 105 |
+
|
| 106 |
+
settings.stream = True
|
| 107 |
+
response_text = answer_agent.get_chat_response(
|
| 108 |
+
f"Write a detailed and complete research document that fulfills the following user request: '{message}', based on the information from the web below.\n\n" +
|
| 109 |
+
result[0]["return_value"],
|
| 110 |
+
role=Roles.tool,
|
| 111 |
+
llm_sampling_settings=settings,
|
| 112 |
+
chat_history=messages,
|
| 113 |
+
returns_streaming_generator=True,
|
| 114 |
+
print_output=False,
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
for text in response_text:
|
| 118 |
+
outputs += text
|
| 119 |
+
|
| 120 |
+
output_settings = LlmStructuredOutputSettings.from_pydantic_models(
|
| 121 |
+
[CitingSources], LlmStructuredOutputType.object_instance
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
citing_sources = answer_agent.get_chat_response(
|
| 125 |
+
"Cite the sources you used in your response.",
|
| 126 |
+
role=Roles.tool,
|
| 127 |
+
llm_sampling_settings=settings,
|
| 128 |
+
chat_history=messages,
|
| 129 |
+
returns_streaming_generator=False,
|
| 130 |
+
structured_output_settings=output_settings,
|
| 131 |
+
print_output=False,
|
| 132 |
+
)
|
| 133 |
+
outputs += "\n\nSources:\n"
|
| 134 |
+
outputs += "\n".join(citing_sources.sources)
|
| 135 |
+
return outputs
|
| 136 |
+
|
| 137 |
+
except Exception as e:
|
| 138 |
+
return f"An error occurred: {e}"
|
| 139 |
+
|
| 140 |
+
# Gradio interface
|
| 141 |
+
demo = gr.Interface(
|
| 142 |
+
fn=respond,
|
| 143 |
+
inputs=[
|
| 144 |
+
gr.Textbox(label="Enter your message:"),
|
| 145 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.45, step=0.1, label="Temperature"),
|
| 146 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
|
| 147 |
+
gr.Slider(minimum=0, maximum=100, value=40, step=1, label="Top-k"),
|
| 148 |
+
gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty")
|
| 149 |
+
],
|
| 150 |
+
outputs="text",
|
| 151 |
+
title="Novav2 Web Engine"
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
if __name__ == "__main__":
|
| 155 |
+
demo.launch()
|