Create app.py
Browse files- src/app.py +414 -0
src/app.py
ADDED
|
@@ -0,0 +1,414 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pathlib import Path
|
| 2 |
+
import os
|
| 3 |
+
from os import path as osp
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from dotenv import load_dotenv
|
| 6 |
+
from crud.vector_store import MultimodalLanceDB
|
| 7 |
+
from preprocess.embedding import BridgeTowerEmbeddings
|
| 8 |
+
from preprocess.preprocessing import extract_and_save_frames_and_metadata
|
| 9 |
+
from utils import (
|
| 10 |
+
download_video,
|
| 11 |
+
get_transcript_vtt,
|
| 12 |
+
download_youtube_subtitle,
|
| 13 |
+
get_video_id_from_url,
|
| 14 |
+
str2time,
|
| 15 |
+
maintain_aspect_ratio_resize,
|
| 16 |
+
getSubs,
|
| 17 |
+
encode_image,
|
| 18 |
+
)
|
| 19 |
+
from mistralai import Mistral
|
| 20 |
+
from langchain_core.runnables import (
|
| 21 |
+
RunnableParallel,
|
| 22 |
+
RunnablePassthrough,
|
| 23 |
+
RunnableLambda
|
| 24 |
+
)
|
| 25 |
+
from PIL import Image
|
| 26 |
+
import lancedb
|
| 27 |
+
|
| 28 |
+
# -------------------------------
|
| 29 |
+
# 1. Setup - HuggingFace Spaces Configuration
|
| 30 |
+
# -------------------------------
|
| 31 |
+
load_dotenv()
|
| 32 |
+
|
| 33 |
+
# HuggingFace Spaces specific setup
|
| 34 |
+
SPACE_ID = os.getenv("SPACE_ID")
|
| 35 |
+
IS_SPACES = SPACE_ID is not None
|
| 36 |
+
|
| 37 |
+
if IS_SPACES:
|
| 38 |
+
LANCEDB_HOST_FILE = "/tmp/.lancedb"
|
| 39 |
+
VIDEO_DIR = "/tmp/videos/video1"
|
| 40 |
+
os.makedirs("/tmp", exist_ok=True)
|
| 41 |
+
else:
|
| 42 |
+
LANCEDB_HOST_FILE = "./shared_data/.lancedb"
|
| 43 |
+
VIDEO_DIR = "./shared_data/videos/video1"
|
| 44 |
+
|
| 45 |
+
TBL_NAME = "vectorstore"
|
| 46 |
+
|
| 47 |
+
# Initialize components
|
| 48 |
+
db = lancedb.connect(LANCEDB_HOST_FILE)
|
| 49 |
+
embedder = BridgeTowerEmbeddings()
|
| 50 |
+
|
| 51 |
+
# -------------------------------
|
| 52 |
+
# 2. Preprocessing + Storage
|
| 53 |
+
# -------------------------------
|
| 54 |
+
def preprocess_and_store(youtube_url: str):
|
| 55 |
+
"""Download video, extract frames+metadata, embed & store in LanceDB"""
|
| 56 |
+
try:
|
| 57 |
+
video_url = youtube_url
|
| 58 |
+
video_dir = VIDEO_DIR
|
| 59 |
+
|
| 60 |
+
# download Youtube video
|
| 61 |
+
video_filepath = download_video(video_url, video_dir)
|
| 62 |
+
|
| 63 |
+
# download Youtube video's subtitle
|
| 64 |
+
video_transcript_filepath = download_youtube_subtitle(video_url, video_dir)
|
| 65 |
+
|
| 66 |
+
extracted_frames_path = osp.join(video_dir, 'extracted_frame')
|
| 67 |
+
|
| 68 |
+
# create these output folders if not existing
|
| 69 |
+
Path(extracted_frames_path).mkdir(parents=True, exist_ok=True)
|
| 70 |
+
Path(video_dir).mkdir(parents=True, exist_ok=True)
|
| 71 |
+
|
| 72 |
+
# call the function to extract frames and metadatas
|
| 73 |
+
metadatas = extract_and_save_frames_and_metadata(
|
| 74 |
+
video_filepath,
|
| 75 |
+
video_transcript_filepath,
|
| 76 |
+
extracted_frames_path,
|
| 77 |
+
video_dir,
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
# collect transcripts and image paths
|
| 81 |
+
video_trans = [vid['transcript'] for vid in metadatas]
|
| 82 |
+
video_img_path = [vid['extracted_frame_path'] for vid in metadatas]
|
| 83 |
+
|
| 84 |
+
n = 7
|
| 85 |
+
updated_video_trans = [
|
| 86 |
+
' '.join(video_trans[i-int(n/2) : i+int(n/2)]) if i-int(n/2) >= 0 else
|
| 87 |
+
' '.join(video_trans[0 : i + int(n/2)]) for i in range(len(video_trans))
|
| 88 |
+
]
|
| 89 |
+
|
| 90 |
+
# also need to update the updated transcripts in metadata
|
| 91 |
+
for i in range(len(updated_video_trans)):
|
| 92 |
+
metadatas[i]['transcript'] = updated_video_trans[i]
|
| 93 |
+
|
| 94 |
+
_ = MultimodalLanceDB.from_text_image_pairs(
|
| 95 |
+
texts=updated_video_trans,
|
| 96 |
+
image_paths=video_img_path,
|
| 97 |
+
embedding=embedder,
|
| 98 |
+
metadatas=metadatas,
|
| 99 |
+
connection=db,
|
| 100 |
+
table_name=TBL_NAME,
|
| 101 |
+
mode="overwrite",
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
return f"β
Video processed and stored: {youtube_url}"
|
| 105 |
+
|
| 106 |
+
except Exception as e:
|
| 107 |
+
return f"β Error processing video: {str(e)}"
|
| 108 |
+
|
| 109 |
+
# -------------------------------
|
| 110 |
+
# 3. Retrieval + Prompt Functions
|
| 111 |
+
# -------------------------------
|
| 112 |
+
vectorstore = MultimodalLanceDB(
|
| 113 |
+
uri=LANCEDB_HOST_FILE,
|
| 114 |
+
embedding=embedder,
|
| 115 |
+
table_name=TBL_NAME
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
retriever_module = vectorstore.as_retriever(
|
| 119 |
+
search_type="similarity",
|
| 120 |
+
search_kwargs={"k": 3}
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
def prompt_processing(input):
|
| 124 |
+
retrieved_results = input["retrieved_results"]
|
| 125 |
+
user_query = input["user_query"]
|
| 126 |
+
|
| 127 |
+
if not retrieved_results:
|
| 128 |
+
return {"prompt": "No relevant content found.", "frame_path": None}
|
| 129 |
+
|
| 130 |
+
retrieved_results = retrieved_results[0]
|
| 131 |
+
prompt_template = (
|
| 132 |
+
"The transcript associated with the image is '{transcript}'. "
|
| 133 |
+
"{user_query}"
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
retrieved_metadata = retrieved_results.metadata
|
| 137 |
+
transcript = retrieved_metadata["transcript"]
|
| 138 |
+
frame_path = retrieved_metadata["extracted_frame_path"]
|
| 139 |
+
|
| 140 |
+
return {
|
| 141 |
+
"prompt": prompt_template.format(transcript=transcript, user_query=user_query),
|
| 142 |
+
"frame_path": frame_path,
|
| 143 |
+
}
|
| 144 |
+
|
| 145 |
+
def lvlm_inference(input):
|
| 146 |
+
try:
|
| 147 |
+
# get the retrieved results and user's query
|
| 148 |
+
lvlm_prompt = input['prompt']
|
| 149 |
+
frame_path = input['frame_path']
|
| 150 |
+
|
| 151 |
+
if frame_path is None:
|
| 152 |
+
return "No relevant frame found.", None
|
| 153 |
+
|
| 154 |
+
# Retrieve the API key from environment variables
|
| 155 |
+
api_key = os.getenv("MISTRAL_API_KEY")
|
| 156 |
+
if not api_key:
|
| 157 |
+
return "β MISTRAL_API_KEY not found. Please set it in the environment variables.", frame_path
|
| 158 |
+
|
| 159 |
+
# Initialize the Mistral client
|
| 160 |
+
client = Mistral(api_key=api_key)
|
| 161 |
+
|
| 162 |
+
base64_image = encode_image(frame_path)
|
| 163 |
+
|
| 164 |
+
# Define the messages for the chat
|
| 165 |
+
messages = [
|
| 166 |
+
{
|
| 167 |
+
"role": "user",
|
| 168 |
+
"content": [
|
| 169 |
+
{
|
| 170 |
+
"type": "text",
|
| 171 |
+
"text": lvlm_prompt
|
| 172 |
+
},
|
| 173 |
+
{
|
| 174 |
+
"type": "image_url",
|
| 175 |
+
"image_url": f"data:image/jpeg;base64,{base64_image}"
|
| 176 |
+
}
|
| 177 |
+
]
|
| 178 |
+
}
|
| 179 |
+
]
|
| 180 |
+
|
| 181 |
+
# Get the chat response
|
| 182 |
+
chat_response = client.chat.complete(
|
| 183 |
+
model="pixtral-12b-2409",
|
| 184 |
+
messages=messages
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
return chat_response.choices[0].message.content, frame_path
|
| 188 |
+
|
| 189 |
+
except Exception as e:
|
| 190 |
+
return f"β Error in inference: {str(e)}", frame_path
|
| 191 |
+
|
| 192 |
+
# LangChain Runnable chain
|
| 193 |
+
prompt_processing_module = RunnableLambda(prompt_processing)
|
| 194 |
+
lvlm_inference_module = RunnableLambda(lvlm_inference)
|
| 195 |
+
|
| 196 |
+
mm_rag_chain = (
|
| 197 |
+
RunnableParallel({"retrieved_results": retriever_module, "user_query": RunnablePassthrough()})
|
| 198 |
+
| prompt_processing_module
|
| 199 |
+
| lvlm_inference_module
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
# -------------------------------
|
| 203 |
+
# 4. Chat API for Gradio
|
| 204 |
+
# -------------------------------
|
| 205 |
+
video_loaded = False
|
| 206 |
+
|
| 207 |
+
def load_video(youtube_url):
|
| 208 |
+
global video_loaded
|
| 209 |
+
if not youtube_url.strip():
|
| 210 |
+
return "β Please enter a YouTube URL"
|
| 211 |
+
|
| 212 |
+
try:
|
| 213 |
+
status = preprocess_and_store(youtube_url)
|
| 214 |
+
if "β
" in status:
|
| 215 |
+
video_loaded = True
|
| 216 |
+
return status
|
| 217 |
+
except Exception as e:
|
| 218 |
+
return f"β Error loading video: {str(e)}"
|
| 219 |
+
|
| 220 |
+
def chat_interface(message, history):
|
| 221 |
+
if not video_loaded:
|
| 222 |
+
return "", history + [(message, "β Please load a video first in the 'Load Video' tab.")], None
|
| 223 |
+
|
| 224 |
+
if not message.strip():
|
| 225 |
+
return "", history, None
|
| 226 |
+
|
| 227 |
+
try:
|
| 228 |
+
final_text_response, frame_path = mm_rag_chain.invoke(message)
|
| 229 |
+
history.append((message, final_text_response))
|
| 230 |
+
|
| 231 |
+
# Load and return the image
|
| 232 |
+
retrieved_image = None
|
| 233 |
+
if frame_path:
|
| 234 |
+
try:
|
| 235 |
+
retrieved_image = Image.open(frame_path)
|
| 236 |
+
except Exception as e:
|
| 237 |
+
print(f"Error loading image: {e}")
|
| 238 |
+
|
| 239 |
+
return "", history, retrieved_image
|
| 240 |
+
|
| 241 |
+
except Exception as e:
|
| 242 |
+
error_msg = f"β Error processing query: {str(e)}"
|
| 243 |
+
history.append((message, error_msg))
|
| 244 |
+
return "", history, None
|
| 245 |
+
|
| 246 |
+
def clear_chat():
|
| 247 |
+
return [], None
|
| 248 |
+
|
| 249 |
+
# -------------------------------
|
| 250 |
+
# 5. Enhanced Gradio Interface
|
| 251 |
+
# -------------------------------
|
| 252 |
+
with gr.Blocks(
|
| 253 |
+
title="Multimodal RAG Video Chat",
|
| 254 |
+
theme=gr.themes.Default()
|
| 255 |
+
) as demo:
|
| 256 |
+
gr.Markdown("""
|
| 257 |
+
# π¬ Multimodal RAG Video Chat
|
| 258 |
+
|
| 259 |
+
Chat with YouTube videos using BridgeTower embeddings + LanceDB + Pixtral Vision-Language Model!
|
| 260 |
+
|
| 261 |
+
β οΈ **Important**: You need to set your `MISTRAL_API_KEY` in the Space settings for this to work.
|
| 262 |
+
""")
|
| 263 |
+
|
| 264 |
+
with gr.Tab("1. Load Video"):
|
| 265 |
+
with gr.Column():
|
| 266 |
+
youtube_url = gr.Textbox(
|
| 267 |
+
label="YouTube URL",
|
| 268 |
+
placeholder="https://www.youtube.com/watch?v=...",
|
| 269 |
+
lines=1,
|
| 270 |
+
scale=4
|
| 271 |
+
)
|
| 272 |
+
with gr.Row():
|
| 273 |
+
load_btn = gr.Button("π Process Video", variant="primary", scale=1)
|
| 274 |
+
status = gr.Textbox(
|
| 275 |
+
label="Status",
|
| 276 |
+
interactive=False,
|
| 277 |
+
lines=2
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
load_btn.click(
|
| 281 |
+
fn=load_video,
|
| 282 |
+
inputs=youtube_url,
|
| 283 |
+
outputs=status,
|
| 284 |
+
show_progress=True
|
| 285 |
+
)
|
| 286 |
+
|
| 287 |
+
with gr.Tab("2. Chat with Video"):
|
| 288 |
+
with gr.Row():
|
| 289 |
+
with gr.Column(scale=2):
|
| 290 |
+
chatbot = gr.Chatbot(
|
| 291 |
+
label="Chat about the video",
|
| 292 |
+
height=500
|
| 293 |
+
)
|
| 294 |
+
|
| 295 |
+
with gr.Column(scale=1):
|
| 296 |
+
retrieved_image = gr.Image(
|
| 297 |
+
label="Retrieved Frame",
|
| 298 |
+
height=400,
|
| 299 |
+
show_label=True,
|
| 300 |
+
interactive=False
|
| 301 |
+
)
|
| 302 |
+
|
| 303 |
+
with gr.Row():
|
| 304 |
+
with gr.Column(scale=4):
|
| 305 |
+
msg = gr.Textbox(
|
| 306 |
+
label="Your question",
|
| 307 |
+
placeholder="Ask something about the video content...",
|
| 308 |
+
lines=2,
|
| 309 |
+
container=False
|
| 310 |
+
)
|
| 311 |
+
with gr.Column(scale=1, min_width=100):
|
| 312 |
+
send_btn = gr.Button("π€ Send", variant="primary")
|
| 313 |
+
clear_btn = gr.Button("ποΈ Clear", variant="secondary")
|
| 314 |
+
|
| 315 |
+
# Event handlers
|
| 316 |
+
msg.submit(
|
| 317 |
+
fn=chat_interface,
|
| 318 |
+
inputs=[msg, chatbot],
|
| 319 |
+
outputs=[msg, chatbot, retrieved_image],
|
| 320 |
+
show_progress=True
|
| 321 |
+
)
|
| 322 |
+
send_btn.click(
|
| 323 |
+
fn=chat_interface,
|
| 324 |
+
inputs=[msg, chatbot],
|
| 325 |
+
outputs=[msg, chatbot, retrieved_image],
|
| 326 |
+
show_progress=True
|
| 327 |
+
)
|
| 328 |
+
clear_btn.click(
|
| 329 |
+
fn=clear_chat,
|
| 330 |
+
outputs=[chatbot, retrieved_image]
|
| 331 |
+
)
|
| 332 |
+
|
| 333 |
+
with gr.Tab("π Instructions"):
|
| 334 |
+
gr.Markdown("""
|
| 335 |
+
## How to use this Multimodal RAG system:
|
| 336 |
+
|
| 337 |
+
### π§ Setup:
|
| 338 |
+
1. **Set API Key**: Make sure `MISTRAL_API_KEY` is set in your Space settings
|
| 339 |
+
2. This app uses Pixtral-12B for vision-language understanding
|
| 340 |
+
|
| 341 |
+
### π₯ Load Video:
|
| 342 |
+
1. Go to the "Load Video" tab
|
| 343 |
+
2. Paste a YouTube URL (make sure it's publicly accessible)
|
| 344 |
+
3. Click "π Process Video" and wait for processing to complete
|
| 345 |
+
4. Look for the β
success message
|
| 346 |
+
|
| 347 |
+
### π¬ Chat with Video:
|
| 348 |
+
1. Go to the "Chat with Video" tab
|
| 349 |
+
2. Ask questions about the video content
|
| 350 |
+
3. The system will retrieve the most relevant frame and provide answers
|
| 351 |
+
4. The retrieved frame will be displayed on the right side
|
| 352 |
+
|
| 353 |
+
## β¨ Features:
|
| 354 |
+
- π₯ **Automatic YouTube Processing**: Downloads and processes YouTube videos
|
| 355 |
+
- π§ **Multimodal Embeddings**: Uses BridgeTower for combined text+image understanding
|
| 356 |
+
- πΎ **Vector Storage**: Stores data in LanceDB for fast similarity search
|
| 357 |
+
- π€ **Vision-Language AI**: Powered by Mistral's Pixtral model
|
| 358 |
+
- πΌοΈ **Visual Context**: Shows relevant video frames alongside responses
|
| 359 |
+
- π **Real-time Processing**: Fast retrieval and inference
|
| 360 |
+
|
| 361 |
+
## β οΈ Limitations:
|
| 362 |
+
- Works with publicly accessible YouTube videos only
|
| 363 |
+
- Processing time depends on video length
|
| 364 |
+
- Requires stable internet connection for video download
|
| 365 |
+
- API rate limits apply based on Mistral usage
|
| 366 |
+
|
| 367 |
+
## π οΈ Technical Stack:
|
| 368 |
+
- **Embeddings**: BridgeTower (multimodal)
|
| 369 |
+
- **Vector DB**: LanceDB
|
| 370 |
+
- **Vision-Language Model**: Pixtral-12B
|
| 371 |
+
- **Framework**: LangChain + Gradio
|
| 372 |
+
""")
|
| 373 |
+
|
| 374 |
+
with gr.Tab("π About"):
|
| 375 |
+
gr.Markdown("""
|
| 376 |
+
## Multimodal RAG Video Chat System
|
| 377 |
+
|
| 378 |
+
This application demonstrates a complete multimodal Retrieval-Augmented Generation (RAG) pipeline that can understand and answer questions about video content.
|
| 379 |
+
|
| 380 |
+
### Architecture:
|
| 381 |
+
1. **Video Processing**: Downloads YouTube videos and extracts frames with timestamps
|
| 382 |
+
2. **Multimodal Embedding**: Uses BridgeTower to create embeddings that understand both visual and textual content
|
| 383 |
+
3. **Vector Storage**: Stores embeddings in LanceDB for efficient similarity search
|
| 384 |
+
4. **Retrieval**: Finds the most relevant video segments based on user queries
|
| 385 |
+
5. **Generation**: Uses Pixtral vision-language model to generate contextual responses
|
| 386 |
+
|
| 387 |
+
### Built with:
|
| 388 |
+
- **Gradio**: For the web interface
|
| 389 |
+
- **LangChain**: For orchestrating the RAG pipeline
|
| 390 |
+
- **LanceDB**: For vector storage and retrieval
|
| 391 |
+
- **BridgeTower**: For multimodal embeddings
|
| 392 |
+
- **Mistral Pixtral**: For vision-language understanding
|
| 393 |
+
|
| 394 |
+
---
|
| 395 |
+
|
| 396 |
+
π‘ **Tip**: For best results, ask specific questions about visual content, actions, or scenes in the video.
|
| 397 |
+
""")
|
| 398 |
+
|
| 399 |
+
# -------------------------------
|
| 400 |
+
# 6. Launch Configuration
|
| 401 |
+
# -------------------------------
|
| 402 |
+
if __name__ == "__main__":
|
| 403 |
+
print('π Starting Multimodal RAG Video Chat App...')
|
| 404 |
+
|
| 405 |
+
# Check for required environment variables
|
| 406 |
+
if not os.getenv("MISTRAL_API_KEY"):
|
| 407 |
+
print("β οΈ WARNING: MISTRAL_API_KEY not found in environment variables")
|
| 408 |
+
print(" Please set this in your HuggingFace Space settings")
|
| 409 |
+
|
| 410 |
+
# Launch with appropriate settings for HF Spaces
|
| 411 |
+
if IS_SPACES:
|
| 412 |
+
demo.launch(share=True, server_name="0.0.0.0", server_port=7860) # Use default settings for HF Spaces
|
| 413 |
+
else:
|
| 414 |
+
demo.launch(share=True, server_name="0.0.0.0", server_port=7860)
|