Spaces:
Running
Running
| import gradio as gr | |
| from gradio_leaderboard import Leaderboard, ColumnFilter | |
| import pandas as pd | |
| from apscheduler.schedulers.background import BackgroundScheduler | |
| from huggingface_hub import snapshot_download | |
| from src.about import TITLE | |
| from src.display.css_html_js import custom_css | |
| from src.display.utils import COLS, AutoEvalColumn, fields | |
| from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN | |
| from src.populate import get_leaderboard_df | |
| import threading | |
| import time | |
| def restart_space(): | |
| time.sleep(30 * 60) # 30 minutes | |
| os._exit(0) # Force exit, HF will restart the space | |
| # Start restart timer in background | |
| threading.Thread(target=restart_space, daemon=True).start() | |
| def restart_space(): | |
| API.restart_space(repo_id=REPO_ID) | |
| def get_best_per_team(df: pd.DataFrame) -> pd.DataFrame: | |
| """Get the best (max global_score) row for each team.""" | |
| if "team" not in df.columns or "global_score" not in df.columns: | |
| return df # fallback | |
| return df.sort_values("global_score", ascending=False).groupby("team", as_index=False).first() | |
| def init_leaderboard(dataframe): | |
| field_names = [f.name for f in AutoEvalColumn.__dataclass_fields__.values()] | |
| datatypes = [getattr(AutoEvalColumn, f).type for f in field_names] | |
| hide_columns = [f for f in field_names if getattr(AutoEvalColumn, f).hidden] | |
| filter_columns=[ | |
| ColumnFilter("Team", type="dropdown", label="Filter by Team"), | |
| ColumnFilter("Submitter", type="dropdown", label="Filter by Submitter"), | |
| ] | |
| return Leaderboard( | |
| value=dataframe, | |
| datatype=datatypes, | |
| search_columns=[ | |
| AutoEvalColumn.team.name, | |
| ], | |
| # hide_columns=hide_columns, | |
| filter_columns=filter_columns, | |
| interactive=True, | |
| ) | |
| ### Download Data | |
| try: | |
| snapshot_download( | |
| repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
| ) | |
| except Exception: | |
| restart_space() | |
| try: | |
| snapshot_download( | |
| repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
| ) | |
| except Exception: | |
| restart_space() | |
| # Initial Data | |
| FULL_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS) | |
| def filter_best_submissions(show_best): | |
| if show_best: | |
| # For each team, get the row with highest global_score | |
| filtered_df = FULL_DF.loc[FULL_DF.groupby("Team")["Global Score"].idxmax()] | |
| else: | |
| filtered_df = FULL_DF | |
| return filtered_df | |
| demo = gr.Blocks(css=custom_css) | |
| with demo: | |
| gr.HTML(TITLE) | |
| with gr.Tabs(elem_classes="tab-buttons"): | |
| with gr.TabItem("🏅 E2LMC Leaderboard", elem_id="llm-benchmark-tab-table", id=0): | |
| show_best_checkbox = gr.Checkbox(label="Show only best submission per team", value=False) | |
| leaderboard_container = gr.Column() | |
| # Initialize leaderboard | |
| with leaderboard_container: | |
| # leaderboard_component = init_leaderboard(get_best_per_team(FULL_DF)) | |
| leaderboard_component = init_leaderboard(filter_best_submissions(show_best_checkbox.value)) | |
| # Update leaderboard on checkbox change | |
| show_best_checkbox.change( | |
| fn=filter_best_submissions, | |
| inputs=[show_best_checkbox], | |
| outputs=[leaderboard_component], | |
| queue=False, | |
| ) | |
| # Scheduler | |
| scheduler = BackgroundScheduler() | |
| scheduler.add_job(restart_space, "interval", seconds=1800) | |
| scheduler.start() | |
| demo.queue(default_concurrency_limit=40).launch() | |