Spaces:
Runtime error
Runtime error
| from typing import Callable, List, Tuple, Dict | |
| import torch | |
| from torch import nn | |
| import torch.nn.functional as F | |
| import numpy as np | |
| def sum_tensor(inp: torch.Tensor, axes: int | List[int], keepdim: bool = False) -> torch.Tensor: | |
| axes = np.unique(axes).astype(int) | |
| if keepdim: | |
| for ax in axes: | |
| inp = inp.sum(int(ax), keepdim=True) | |
| else: | |
| for ax in sorted(axes, reverse=True): | |
| inp = inp.sum(int(ax)) | |
| return inp | |
| def get_tp_fp_fn(net_output: torch.Tensor, gt: torch.Tensor, axes: int | Tuple[int, ...] | None = None, mask: torch.Tensor | None = None, square: bool = False) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
| if axes is None: | |
| axes = tuple(range(2, len(net_output.size()))) | |
| shp_x = net_output.shape | |
| shp_y = gt.shape | |
| with torch.no_grad(): | |
| if len(shp_x) != len(shp_y): | |
| gt = gt.view((shp_y[0], 1, *shp_y[1:])) | |
| if all([i == j for i, j in zip(net_output.shape, gt.shape)]): | |
| y_onehot = gt | |
| else: | |
| gt = gt.long() | |
| y_onehot = torch.zeros(shp_x) | |
| if net_output.device.type == "cuda": | |
| y_onehot = y_onehot.cuda(net_output.device.index) | |
| y_onehot.scatter_(1, gt, 1) | |
| tp = net_output * y_onehot | |
| fp = net_output * (1 - y_onehot) | |
| fn = (1 - net_output) * y_onehot | |
| if mask is not None: | |
| tp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(tp, dim=1)), dim=1) | |
| fp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fp, dim=1)), dim=1) | |
| fn = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fn, dim=1)), dim=1) | |
| if square: | |
| tp = tp ** 2 | |
| fp = fp ** 2 | |
| fn = fn ** 2 | |
| tp = sum_tensor(tp, axes, keepdim=False) | |
| fp = sum_tensor(fp, axes, keepdim=False) | |
| fn = sum_tensor(fn, axes, keepdim=False) | |
| return tp, fp, fn | |
| def softmax_helper(x: torch.Tensor) -> torch.Tensor: | |
| rpt = [1 for _ in range(len(x.size()))] | |
| rpt[1] = x.size(1) | |
| x_max = x.max(1, keepdim=True)[0].repeat(*rpt) | |
| e_x = torch.exp(x - x_max) | |
| return e_x / e_x.sum(1, keepdim=True).repeat(*rpt) | |
| def flatten(tensor: torch.Tensor) -> torch.Tensor: | |
| C = tensor.size(1) | |
| axis_order = (1, 0) + tuple(range(2, tensor.dim())) | |
| transposed = tensor.permute(axis_order).contiguous() | |
| return transposed.view(C, -1) | |
| class SoftDiceLoss(nn.Module): | |
| def __init__(self, apply_nonlin: Callable | None = softmax_helper, batch_dice: bool = True, do_bg: bool = False, smooth: float = 1.0, square: bool = True) -> None: | |
| super().__init__() | |
| self.square = square | |
| self.do_bg = do_bg | |
| self.batch_dice = batch_dice | |
| self.apply_nonlin = apply_nonlin | |
| self.smooth = smooth | |
| def forward(self, x: torch.Tensor, y: torch.Tensor, loss_mask: torch.Tensor | None = None) -> torch.Tensor: | |
| shp_x = x.shape | |
| if self.batch_dice: | |
| axes = [0] + list(range(2, len(shp_x))) | |
| else: | |
| axes = list(range(2, len(shp_x))) | |
| if self.apply_nonlin is not None: | |
| x = self.apply_nonlin(x) | |
| tp, fp, fn = get_tp_fp_fn(x, y, axes, loss_mask, self.square) | |
| dc = (2 * tp + self.smooth) / (2 * tp + fp + fn + self.smooth) | |
| if not self.do_bg: | |
| if self.batch_dice: | |
| dc = dc[1:] | |
| else: | |
| dc = dc[:, 1:] | |
| dc = dc.mean() | |
| return -dc | |
| class SoftDiceLoss_v2(nn.Module): | |
| def __init__(self, smooth: float = 1.0) -> None: | |
| super().__init__() | |
| self.smooth = smooth | |
| def forward(self, logits: torch.Tensor, targets: torch.Tensor) -> torch.Tensor: | |
| probs = F.softmax(logits, dim=1) | |
| targets = F.one_hot(targets, num_classes=probs.size(1)).permute(0, 3, 1, 2).float() | |
| intersection = torch.sum(probs * targets, dim=(0, 2, 3)) | |
| union = torch.sum(probs + targets, dim=(0, 2, 3)) | |
| dl = 1 - (2.0 * intersection + self.smooth) / (union + self.smooth) | |
| dice_loss = torch.mean(dl) | |
| return dice_loss | |
| class SSLoss(nn.Module): | |
| def __init__(self, apply_nonlin: Callable | None = softmax_helper, batch_dice: bool = True, do_bg: bool = False, smooth: float = 1., square: bool = True) -> None: | |
| super().__init__() | |
| self.square = square | |
| self.do_bg = do_bg | |
| self.batch_dice = batch_dice | |
| self.apply_nonlin = apply_nonlin | |
| self.smooth = smooth | |
| self.r = 0.1 | |
| def forward(self, net_output: torch.Tensor, gt: torch.Tensor) -> torch.Tensor: | |
| shp_x = net_output.shape | |
| shp_y = gt.shape | |
| with torch.no_grad(): | |
| if len(shp_x) != len(shp_y): | |
| gt = gt.view((shp_y[0], 1, *shp_y[1:])) | |
| if all([i == j for i, j in zip(net_output.shape, gt.shape)]): | |
| y_onehot = gt | |
| else: | |
| gt = gt.long() | |
| y_onehot = torch.zeros(shp_x) | |
| if net_output.device.type == "cuda": | |
| y_onehot = y_onehot.cuda(net_output.device.index) | |
| y_onehot.scatter_(1, gt, 1) | |
| if self.batch_dice: | |
| axes = [0] + list(range(2, len(shp_x))) | |
| else: | |
| axes = list(range(2, len(shp_x))) | |
| if self.apply_nonlin is not None: | |
| net_output = self.apply_nonlin(net_output) | |
| bg_onehot = 1 - y_onehot | |
| squared_error = (y_onehot - net_output)**2 | |
| specificity_part = sum_tensor(squared_error*y_onehot, axes)/(sum_tensor(y_onehot, axes)+self.smooth) | |
| sensitivity_part = sum_tensor(squared_error*bg_onehot, axes)/(sum_tensor(bg_onehot, axes)+self.smooth) | |
| ss = self.r * specificity_part + (1-self.r) * sensitivity_part | |
| if not self.do_bg: | |
| if self.batch_dice: | |
| ss = ss[1:] | |
| else: | |
| ss = ss[:, 1:] | |
| ss = ss.mean() | |
| return ss | |
| class SSLoss_v2(nn.Module): | |
| def __init__(self, alpha: float = 0.5) -> None: | |
| super().__init__() | |
| self.alpha = alpha | |
| def forward(self, logits: torch.Tensor, targets: torch.Tensor) -> torch.Tensor: | |
| probs = F.softmax(logits, dim=1) | |
| targets = F.one_hot(targets, num_classes=probs.size(1)).permute(0, 3, 1, 2).float() | |
| intersection = torch.sum(probs * targets, dim=(0, 2, 3)) | |
| cardinality = torch.sum(probs + targets, dim=(0, 2, 3)) | |
| dice_loss = 1 - (2.0 * intersection + 1e-6) / (cardinality + 1e-6) | |
| ce_loss = F.cross_entropy(probs, targets, reduction='mean') | |
| loss = 0.5 * dice_loss.mean() + (1 - 0.5) * ce_loss | |
| return loss | |
| class IoULoss(nn.Module): | |
| def __init__(self, apply_nonlin: Callable | None = softmax_helper, batch_dice: bool = True, do_bg: bool = False, smooth: float = 1., square: bool = True) -> None: | |
| super().__init__() | |
| self.square = square | |
| self.do_bg = do_bg | |
| self.batch_dice = batch_dice | |
| self.apply_nonlin = apply_nonlin | |
| self.smooth = smooth | |
| def forward(self, x: torch.Tensor, y: torch.Tensor, loss_mask: torch.Tensor | None = None) -> torch.Tensor: | |
| shp_x = x.shape | |
| if self.batch_dice: | |
| axes = [0] + list(range(2, len(shp_x))) | |
| else: | |
| axes = list(range(2, len(shp_x))) | |
| if self.apply_nonlin is not None: | |
| x = self.apply_nonlin(x) | |
| tp, fp, fn = get_tp_fp_fn(x, y, axes, loss_mask, self.square) | |
| iou = (tp + self.smooth) / (tp + fp + fn + self.smooth) | |
| if not self.do_bg: | |
| if self.batch_dice: | |
| iou = iou[1:] | |
| else: | |
| iou = iou[:, 1:] | |
| iou = iou.mean() | |
| return -iou | |
| class IoULoss_v2(nn.Module): | |
| def __init__(self, smooth: float = 1.0) -> None: | |
| super().__init__() | |
| self.smooth = smooth | |
| def forward(self, logits: torch.Tensor, targets: torch.Tensor) -> torch.Tensor: | |
| probs = F.softmax(logits, dim=1) | |
| targets = F.one_hot(targets, num_classes=probs.size(1)).permute(0, 3, 1, 2).float() | |
| intersection = torch.sum(probs * targets, dim=(0, 2, 3)) | |
| union = torch.sum(probs + targets, dim=(0, 2, 3)) - intersection | |
| iou = 1 - (intersection + self.smooth) / (union + self.smooth) | |
| iou_loss = torch.mean(iou) | |
| return iou_loss | |
| class TverskyLoss(nn.Module): | |
| def __init__(self, apply_nonlin: Callable | None = softmax_helper, batch_dice: bool = True, do_bg: bool = False, smooth: float = 1., square: bool = True) -> None: | |
| super().__init__() | |
| self.square = square | |
| self.do_bg = do_bg | |
| self.batch_dice = batch_dice | |
| self.apply_nonlin = apply_nonlin | |
| self.smooth = smooth | |
| self.alpha = 0.3 | |
| self.beta = 0.7 | |
| def forward(self, x: torch.Tensor, y: torch.Tensor, loss_mask: torch.Tensor | None = None) -> torch.Tensor: | |
| shp_x = x.shape | |
| if self.batch_dice: | |
| axes = [0] + list(range(2, len(shp_x))) | |
| else: | |
| axes = list(range(2, len(shp_x))) | |
| if self.apply_nonlin is not None: | |
| x = self.apply_nonlin(x) | |
| tp, fp, fn = get_tp_fp_fn(x, y, axes, loss_mask, self.square) | |
| tversky = (tp + self.smooth) / (tp + self.alpha*fp + self.beta*fn + self.smooth) | |
| if not self.do_bg: | |
| if self.batch_dice: | |
| tversky = tversky[1:] | |
| else: | |
| tversky = tversky[:, 1:] | |
| tversky = tversky.mean() | |
| return -tversky | |
| class TverskyLoss_v2(nn.Module): | |
| def __init__(self, alpha: float = 0.5, beta: float = 0.5, smooth: float = 1.0) -> None: | |
| super().__init__() | |
| self.alpha = alpha | |
| self.beta = beta | |
| self.smooth = smooth | |
| def forward(self, logits: torch.Tensor, targets: torch.Tensor) -> torch.Tensor: | |
| probs = F.softmax(logits, dim=1) | |
| targets = F.one_hot(targets, num_classes=probs.size(1)).permute(0, 3, 1, 2).float() | |
| tp = torch.sum(probs * targets, dim=(0, 2, 3)) | |
| fp = torch.sum((1 - targets) * probs, dim=(0, 2, 3)) | |
| fn = torch.sum(targets * (1 - probs), dim=(0, 2, 3)) | |
| tversky = 1 - (tp + self.smooth) / (tp + self.alpha * fp + self.beta * fn + self.smooth) | |
| tversky_loss = torch.mean(tversky) | |
| return tversky_loss | |
| class FocalTversky_loss(nn.Module): | |
| def __init__(self, tversky_kwargs: Dict, gamma: float = 0.75) -> None: | |
| super().__init__() | |
| self.gamma = gamma | |
| self.tversky = TverskyLoss(**tversky_kwargs) | |
| def forward(self, net_output: torch.Tensor, target: torch.Tensor) -> torch.Tensor: | |
| tversky_loss = 1 + self.tversky(net_output, target) | |
| focal_tversky = torch.pow(tversky_loss, self.gamma) | |
| return focal_tversky | |
| class FocalTversky_loss_v2(nn.Module): | |
| def __init__(self, alpha: float = 0.5, beta: float = 0.5, gamma: float = 1.5, smooth: float = 1.0) -> None: | |
| super().__init__() | |
| self.alpha = alpha | |
| self.beta = beta | |
| self.gamma = gamma | |
| self.smooth = smooth | |
| def forward(self, logits: torch.Tensor, targets: torch.Tensor) -> torch.Tensor: | |
| probs = F.softmax(logits, dim=1) | |
| targets = F.one_hot(targets, num_classes=probs.size(1)).permute(0, 3, 1, 2).float() | |
| tp = torch.sum(probs * targets, dim=(0, 2, 3)) | |
| fp = torch.sum((1 - targets) * probs, dim=(0, 2, 3)) | |
| fn = torch.sum(targets * (1 - probs), dim=(0, 2, 3)) | |
| focal_tversky = (1 - (tp + self.smooth) / (tp + self.alpha * fp + self.beta * fn + self.smooth)) ** self.gamma | |
| focal_tversky_loss = torch.mean(focal_tversky) | |
| return focal_tversky_loss | |
| class AsymLoss(nn.Module): | |
| def __init__(self, apply_nonlin: Callable | None = softmax_helper, batch_dice: bool = True, do_bg: bool = False, smooth: float = 1., square: bool = True) -> None: | |
| super().__init__() | |
| self.square = square | |
| self.do_bg = do_bg | |
| self.batch_dice = batch_dice | |
| self.apply_nonlin = apply_nonlin | |
| self.smooth = smooth | |
| self.beta = 1.5 | |
| def forward(self, x: torch.Tensor, y: torch.Tensor, loss_mask: torch.Tensor | None = None) -> torch.Tensor: | |
| shp_x = x.shape | |
| if self.batch_dice: | |
| axes = [0] + list(range(2, len(shp_x))) | |
| else: | |
| axes = list(range(2, len(shp_x))) | |
| if self.apply_nonlin is not None: | |
| x = self.apply_nonlin(x) | |
| tp, fp, fn = get_tp_fp_fn(x, y, axes, loss_mask, self.square) | |
| weight = (self.beta**2)/(1+self.beta**2) | |
| asym = (tp + self.smooth) / (tp + weight*fn + (1-weight)*fp + self.smooth) | |
| if not self.do_bg: | |
| if self.batch_dice: | |
| asym = asym[1:] | |
| else: | |
| asym = asym[:, 1:] | |
| asym = asym.mean() | |
| return -asym | |
| class AsymLoss_v2(nn.Module): | |
| def __init__(self, alpha: float = 0.5, gamma: float = 2.0, smooth: float = 1e-5) -> None: | |
| super().__init__() | |
| self.alpha = alpha | |
| self.gamma = gamma | |
| self.smooth = smooth | |
| def forward(self, logits: torch.Tensor, targets: torch.Tensor) -> torch.Tensor: | |
| probs = F.softmax(logits, dim=1) | |
| targets_one_hot = F.one_hot(targets, num_classes=probs.size(1)).permute(0, 3, 1, 2).float() | |
| pos_loss = -self.alpha * (1 - probs) ** self.gamma * targets_one_hot * torch.log(probs + self.smooth) | |
| neg_loss = -(1 - self.alpha) * probs ** self.gamma * (1 - targets_one_hot) * torch.log(1 - probs + self.smooth) | |
| loss = pos_loss + neg_loss | |
| return loss.mean() | |
| class ExpLog_loss(nn.Module): | |
| def __init__(self, soft_dice_kwargs: Dict, wce_kwargs: Dict, gamma: float = 0.3) -> None: | |
| super().__init__() | |
| self.wce = WeightedCrossEntropyLoss(**wce_kwargs) | |
| self.dc = SoftDiceLoss_v2(**soft_dice_kwargs) | |
| self.gamma = gamma | |
| def forward(self, net_output: torch.Tensor, target: torch.Tensor) -> torch.Tensor: | |
| dc_loss = -self.dc(net_output, target) | |
| wce_loss = self.wce(net_output, target) | |
| explog_loss = 0.8*torch.pow(-torch.log(torch.clamp(dc_loss, 1e-6)), self.gamma) + 0.2*wce_loss | |
| return explog_loss | |
| class FocalLoss(nn.Module): | |
| def __init__(self, apply_nonlin: Callable | None = softmax_helper, alpha: float | List[float] | np.ndarray | None = None, gamma: int = 2, balance_index: int = 0, smooth: float = 1e-4, size_average: bool = True) -> None: | |
| super().__init__() | |
| self.apply_nonlin = apply_nonlin | |
| self.alpha = alpha | |
| self.gamma = gamma | |
| self.balance_index = balance_index | |
| self.smooth = smooth | |
| self.size_average = size_average | |
| if self.smooth is not None: | |
| if self.smooth < 0 or self.smooth > 1.0: | |
| raise ValueError("smooth value should be in [0,1]") | |
| def forward(self, logit: torch.Tensor, target: torch.Tensor) -> torch.Tensor: | |
| if self.apply_nonlin is not None: | |
| logit = self.apply_nonlin(logit) | |
| num_class = logit.shape[1] | |
| if logit.dim() > 2: | |
| logit = logit.view(logit.size(0), logit.size(1), -1) | |
| logit = logit.permute(0, 2, 1).contiguous() | |
| logit = logit.view(-1, logit.size(-1)) | |
| target = torch.squeeze(target, 1) | |
| target = target.view(-1, 1) | |
| alpha = self.alpha | |
| if alpha is None: | |
| alpha = torch.ones(num_class, 1) | |
| elif isinstance(alpha, (list, np.ndarray)): | |
| assert len(alpha) == num_class | |
| alpha = torch.FloatTensor(alpha).view(num_class, 1) | |
| alpha = alpha / alpha.sum() | |
| elif isinstance(alpha, float): | |
| alpha = torch.ones(num_class, 1) | |
| alpha = alpha * (1 - self.alpha) | |
| alpha[self.balance_index] = self.alpha | |
| else: | |
| raise TypeError("Not support alpha type") | |
| if alpha.device != logit.device: | |
| alpha = alpha.to(logit.device) | |
| idx = target.cpu().long() | |
| one_hot_key = torch.FloatTensor(target.size(0), num_class).zero_() | |
| one_hot_key = one_hot_key.scatter_(1, idx, 1) | |
| if one_hot_key.device != logit.device: | |
| one_hot_key = one_hot_key.to(logit.device) | |
| if self.smooth: | |
| one_hot_key = torch.clamp( | |
| one_hot_key, self.smooth/(num_class-1), 1.0 - self.smooth) | |
| pt = (one_hot_key * logit).sum(1) + self.smooth | |
| logpt = pt.log() | |
| gamma = self.gamma | |
| alpha = alpha[idx] | |
| alpha = torch.squeeze(alpha) | |
| loss = -1 * alpha * torch.pow((1 - pt), gamma) * logpt | |
| if self.size_average: | |
| loss = loss.mean() | |
| else: | |
| loss = loss.sum() | |
| return loss | |
| def lovasz_grad(gt_sorted: torch.Tensor) -> torch.Tensor: | |
| p = len(gt_sorted) | |
| gts = gt_sorted.sum() | |
| intersection = gts - gt_sorted.float().cumsum(0) | |
| union = gts + (1 - gt_sorted).float().cumsum(0) | |
| jaccard = 1. - intersection / union | |
| if p > 1: | |
| jaccard[1:p] = jaccard[1:p] - jaccard[0:-1] | |
| return jaccard | |
| class LovaszSoftmax(nn.Module): | |
| def __init__(self, reduction: str = "mean") -> None: | |
| super().__init__() | |
| self.reduction = reduction | |
| def prob_flatten(self, input: torch.Tensor, target: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: | |
| assert input.dim() in [4, 5] | |
| num_class = input.size(1) | |
| if input.dim() == 4: | |
| input = input.permute(0, 2, 3, 1).contiguous() | |
| input_flatten = input.view(-1, num_class) | |
| elif input.dim() == 5: | |
| input = input.permute(0, 2, 3, 4, 1).contiguous() | |
| input_flatten = input.view(-1, num_class) | |
| target_flatten = target.view(-1) | |
| return input_flatten, target_flatten | |
| def lovasz_softmax_flat(self, inputs: torch.Tensor, targets: torch.Tensor) -> torch.Tensor: | |
| num_classes = inputs.size(1) | |
| losses = [] | |
| for c in range(num_classes): | |
| target_c = (targets == c).float() | |
| if num_classes == 1: | |
| input_c = inputs[:, 0] | |
| else: | |
| input_c = inputs[:, c] | |
| loss_c = (torch.autograd.Variable(target_c) - input_c).abs() | |
| loss_c_sorted, loss_index = torch.sort(loss_c, 0, descending=True) | |
| target_c_sorted = target_c[loss_index] | |
| losses.append(torch.dot(loss_c_sorted, torch.autograd.Variable(lovasz_grad(target_c_sorted)))) | |
| losses = torch.stack(losses) | |
| if self.reduction == "none": | |
| loss = losses | |
| elif self.reduction == "sum": | |
| loss = losses.sum() | |
| else: | |
| loss = losses.mean() | |
| return loss | |
| def forward(self, inputs: torch.Tensor, targets: torch.Tensor) -> torch.Tensor: | |
| inputs, targets = self.prob_flatten(inputs, targets) | |
| losses = self.lovasz_softmax_flat(inputs, targets) | |
| return losses | |
| class TopKLoss(nn.Module): | |
| def __init__(self, weight: torch.Tensor | None = None, ignore_index: int = -100, k: int = 10) -> None: | |
| super().__init__() | |
| self.k = k | |
| self.cross_entropy = nn.CrossEntropyLoss(weight=weight, ignore_index=ignore_index, reduction="none") | |
| def forward(self, inp: torch.Tensor, target: torch.Tensor) -> torch.Tensor: | |
| pixel_losses = self.cross_entropy(inp, target) | |
| pixel_losses = pixel_losses.view(-1) | |
| num_voxels = pixel_losses.numel() | |
| res, _ = torch.topk(pixel_losses, int(num_voxels * self.k / 100), sorted=False) | |
| return res.mean() | |
| class WeightedCrossEntropyLoss(torch.nn.CrossEntropyLoss): | |
| def __init__(self, weight: torch.Tensor | None = None) -> None: | |
| super().__init__() | |
| self.weight = weight | |
| def forward(self, inp: torch.Tensor, target: torch.Tensor) -> torch.Tensor: | |
| target = target.long() | |
| num_classes = inp.size()[1] | |
| i0 = 1 | |
| i1 = 2 | |
| while i1 < len(inp.shape): | |
| inp = inp.transpose(i0, i1) | |
| i0 += 1 | |
| i1 += 1 | |
| inp = inp.contiguous() | |
| inp = inp.view(-1, num_classes) | |
| target = target.view(-1,) | |
| wce_loss = torch.nn.CrossEntropyLoss(weight=self.weight) | |
| return wce_loss(inp, target) |