Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoModelForSequenceClassification
|
| 2 |
+
from transformers import AutoTokenizer
|
| 3 |
+
import numpy as np
|
| 4 |
+
from scipy.special import softmax
|
| 5 |
+
|
| 6 |
+
MODEL = "Davlan/naija-twitter-sentiment-afriberta-large"
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
| 8 |
+
|
| 9 |
+
# PT
|
| 10 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def get_senti(text):
|
| 14 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
| 15 |
+
output = model(**encoded_input)
|
| 16 |
+
scores = output[0][0].detach().numpy()
|
| 17 |
+
scores = softmax(scores)
|
| 18 |
+
|
| 19 |
+
id2label = {0:"positive✅", 1:"neutral😐", 2:"negative❌"}
|
| 20 |
+
|
| 21 |
+
ranking = np.argsort(scores)
|
| 22 |
+
ranking = ranking[::-1]
|
| 23 |
+
out = []
|
| 24 |
+
for i in range(scores.shape[0]):
|
| 25 |
+
l = id2label[ranking[i]]
|
| 26 |
+
s = scores[ranking[i]]
|
| 27 |
+
out.append(f"{i+1}) {l} {np.round(float(s), 4)}")
|
| 28 |
+
return "\n".join(out)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
import gradio as gr
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
demo = gr.Interface(
|
| 36 |
+
fn=get_senti,
|
| 37 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter Words Here..."),
|
| 38 |
+
outputs="text",
|
| 39 |
+
)
|
| 40 |
+
demo.launch()
|