import gradio as gr from pydub import AudioSegment import edge_tts import os import asyncio import uuid import re import time import tempfile from concurrent.futures import ThreadPoolExecutor from typing import List, Tuple, Optional, Dict, Any import math from dataclasses import dataclass class TimingManager: def __init__(self): self.current_time = 0 self.segment_gap = 100 # ms gap between segments def get_timing(self, duration): start_time = self.current_time end_time = start_time + duration self.current_time = end_time + self.segment_gap return start_time, end_time def get_audio_length(audio_file): audio = AudioSegment.from_file(audio_file) return len(audio) / 1000 def format_time_ms(milliseconds): seconds, ms = divmod(int(milliseconds), 1000) mins, secs = divmod(mins, 60) hrs, mins = divmod(mins, 60) return f"{hrs:02}:{mins:02}:{secs:02},{ms:03}" @dataclass class Segment: id: int text: str start_time: int = 0 end_time: int = 0 duration: int = 0 audio: Optional[AudioSegment] = None lines: List[str] = None # Add lines field for display purposes only class TextProcessor: def __init__(self, words_per_line: int, lines_per_segment: int): self.words_per_line = words_per_line self.lines_per_segment = lines_per_segment self.min_segment_words = 3 self.max_segment_words = words_per_line * lines_per_segment * 1.5 # Allow 50% more for natural breaks self.punctuation_weights = { '.': 1.0, # Strong break '!': 1.0, '?': 1.0, ';': 0.8, # Medium-strong break ':': 0.7, ',': 0.5, # Medium break '-': 0.3, # Weak break '(': 0.2, ')': 0.2 } def analyze_sentence_complexity(self, text: str) -> float: """Analyze sentence complexity to determine optimal segment length""" words = text.split() complexity = 1.0 # Adjust for sentence length if len(words) > self.words_per_line * 2: complexity *= 1.2 # Adjust for punctuation density punct_count = sum(text.count(p) for p in self.punctuation_weights.keys()) complexity *= (1 + (punct_count / len(words)) * 0.5) return complexity def find_natural_breaks(self, text: str) -> List[Tuple[int, float]]: """Find natural break points with their weights""" breaks = [] words = text.split() for i, word in enumerate(words): weight = 0 # Check for punctuation for punct, punct_weight in self.punctuation_weights.items(): if word.endswith(punct): weight = max(weight, punct_weight) # Check for natural phrase boundaries phrase_starters = {'however', 'therefore', 'moreover', 'furthermore', 'meanwhile', 'although', 'because'} if i < len(words) - 1 and words[i+1].lower() in phrase_starters: weight = max(weight, 0.6) # Check for conjunctions at natural points if i > self.min_segment_words: conjunctions = {'and', 'but', 'or', 'nor', 'for', 'yet', 'so'} if word.lower() in conjunctions: weight = max(weight, 0.4) if weight > 0: breaks.append((i, weight)) return breaks def split_into_segments(self, text: str) -> List[Segment]: # Normalize text and add proper spacing around punctuation text = re.sub(r'\s+', ' ', text.strip()) text = re.sub(r'([.!?,;:])\s*', r'\1 ', text) text = re.sub(r'\s+([.!?,;:])', r'\1', text) # First, split into major segments by strong punctuation segments = [] current_segment = [] current_text = "" words = text.split() i = 0 while i < len(words): complexity = self.analyze_sentence_complexity(' '.join(words[i:i + self.words_per_line * 2])) breaks = self.find_natural_breaks(' '.join(words[i:i + int(self.max_segment_words * complexity)])) # Find best break point best_break = None best_weight = 0 for break_idx, weight in breaks: actual_idx = i + break_idx if (actual_idx - i >= self.min_segment_words and actual_idx - i <= self.max_segment_words): if weight > best_weight: best_break = break_idx best_weight = weight if best_break is None: # If no good break found, use maximum length best_break = min(self.words_per_line * self.lines_per_segment, len(words) - i) # Create segment segment_words = words[i:i + best_break + 1] segment_text = ' '.join(segment_words) # Split segment into lines lines = self.split_into_lines(segment_text) final_segment_text = '\n'.join(lines) segments.append(Segment( id=len(segments) + 1, text=final_segment_text )) i += best_break + 1 return segments def split_into_lines(self, text: str) -> List[str]: """Split segment text into natural lines""" words = text.split() lines = [] current_line = [] word_count = 0 for word in words: current_line.append(word) word_count += 1 # Check for natural line breaks is_break = ( word_count >= self.words_per_line or any(word.endswith(p) for p in '.!?') or (word_count >= self.words_per_line * 0.7 and any(word.endswith(p) for p in ',;:')) ) if is_break: lines.append(' '.join(current_line)) current_line = [] word_count = 0 if current_line: lines.append(' '.join(current_line)) return lines # IMPROVEMENT 1: Enhanced Error Handling class TTSError(Exception): """Custom exception for TTS processing errors""" pass async def process_segment_with_timing(segment: Segment, voice: str, rate: str, pitch: str) -> Segment: """Process a complete segment as a single TTS unit with improved error handling""" audio_file = os.path.join(tempfile.gettempdir(), f"temp_segment_{segment.id}_{uuid.uuid4()}.wav") try: # Process the entire segment text as one unit, replacing newlines with spaces segment_text = ' '.join(segment.text.split('\n')) tts = edge_tts.Communicate(segment_text, voice, rate=rate, pitch=pitch) try: await tts.save(audio_file) except Exception as e: raise TTSError(f"Failed to generate audio for segment {segment.id}: {str(e)}") if not os.path.exists(audio_file) or os.path.getsize(audio_file) == 0: raise TTSError(f"Generated audio file is empty or missing for segment {segment.id}") try: segment.audio = AudioSegment.from_file(audio_file) # Reduced silence to 30ms for more natural flow silence = AudioSegment.silent(duration=30) segment.audio = silence + segment.audio + silence segment.duration = len(segment.audio) except Exception as e: raise TTSError(f"Failed to process audio file for segment {segment.id}: {str(e)}") return segment except Exception as e: if not isinstance(e, TTSError): raise TTSError(f"Unexpected error processing segment {segment.id}: {str(e)}") raise finally: if os.path.exists(audio_file): try: os.remove(audio_file) except Exception: pass # Ignore deletion errors # IMPROVEMENT 2: Better File Management with cleanup class FileManager: """Manages temporary and output files with cleanup capabilities""" def __init__(self): self.temp_dir = tempfile.mkdtemp(prefix="tts_app_") self.output_files = [] self.max_files_to_keep = 5 # Keep only the 5 most recent output pairs def get_temp_path(self, prefix): """Get a path for a temporary file""" return os.path.join(self.temp_dir, f"{prefix}_{uuid.uuid4()}") def create_output_paths(self): """Create paths for output files""" unique_id = str(uuid.uuid4()) audio_path = os.path.join(self.temp_dir, f"final_audio_{unique_id}.mp3") srt_path = os.path.join(self.temp_dir, f"final_subtitles_{unique_id}.srt") self.output_files.append((srt_path, audio_path)) self.cleanup_old_files() return srt_path, audio_path def cleanup_old_files(self): """Clean up old output files, keeping only the most recent ones""" if len(self.output_files) > self.max_files_to_keep: old_files = self.output_files[:-self.max_files_to_keep] for srt_path, audio_path in old_files: try: if os.path.exists(srt_path): os.remove(srt_path) if os.path.exists(audio_path): os.remove(audio_path) except Exception: pass # Ignore deletion errors # Update the list to only include files we're keeping self.output_files = self.output_files[-self.max_files_to_keep:] def cleanup_all(self): """Clean up all managed files""" for srt_path, audio_path in self.output_files: try: if os.path.exists(srt_path): os.remove(srt_path) if os.path.exists(audio_path): os.remove(audio_path) except Exception: pass # Ignore deletion errors try: os.rmdir(self.temp_dir) except Exception: pass # Ignore if directory isn't empty or can't be removed # Create global file manager file_manager = FileManager() # This function generates an HTML download link. # The `target="_blank"` attribute ensures that when this link is clicked, # the download action opens in a new browser tab or window. def create_download_link(audio_path): if audio_path is None: return "" # Return an empty string if no audio path, as HTML component expects a string filename = Path(audio_path).name # Update URL format to match Gradio's file serving pattern base_url = "aman18811-wfr-01.hf.space" # This base_url might need to be adjusted for your specific Gradio deployment file_url = f"https://{base_url}/gradio_api/file={audio_path}" return f""" Download Audio File """ # IMPROVEMENT 3: Parallel Processing for Segments async def generate_accurate_srt( text: str, voice: str, rate: str, pitch: str, words_per_line: int, lines_per_segment: int, progress_callback=None, parallel: bool = True, max_workers: int = 4 ) -> Tuple[str, str]: """Generate accurate SRT with parallel processing option""" processor = TextProcessor(words_per_line, lines_per_segment) segments = processor.split_into_segments(text) total_segments = len(segments) processed_segments = [] # Update progress to show segmentation is complete if progress_callback: progress_callback(0.1, "Text segmentation complete") if parallel and total_segments > 1: # Process segments in parallel processed_count = 0 segment_tasks = [] # Create a semaphore to limit concurrent tasks semaphore = asyncio.Semaphore(max_workers) async def process_with_semaphore(segment): async with semaphore: nonlocal processed_count try: result = await process_segment_with_timing(segment, voice, rate, pitch) processed_count += 1 if progress_callback: progress = 0.1 + (0.8 * processed_count / total_segments) progress_callback(progress, f"Processed {processed_count}/{total_segments} segments") return result except Exception as e: # Handle errors in individual segments processed_count += 1 if progress_callback: progress = 0.1 + (0.8 * processed_count / total_segments) progress_callback(progress, f"Error in segment {segment.id}: {str(e)}") raise # Create tasks for all segments for segment in segments: segment_tasks.append(process_with_semaphore(segment)) # Run all tasks and collect results try: processed_segments = await asyncio.gather(*segment_tasks) except Exception as e: if progress_callback: progress_callback(0.9, f"Error during parallel processing: {str(e)}") raise TTSError(f"Failed during parallel processing: {str(e)}") else: # Process segments sequentially (original method) for i, segment in enumerate(segments): try: processed_segment = await process_segment_with_timing(segment, voice, rate, pitch) processed_segments.append(processed_segment) if progress_callback: progress = 0.1 + (0.8 * (i + 1) / total_segments) progress_callback(progress, f"Processed {i + 1}/{total_segments} segments") except Exception as e: if progress_callback: progress_callback(0.9, f"Error processing segment {segment.id}: {str(e)}") raise TTSError(f"Failed to process segment {segment.id}: {str(e)}") # Sort segments by ID to ensure correct order processed_segments.sort(key=lambda s: s.id) if progress_callback: progress_callback(0.9, "Finalizing audio and subtitles") # Now combine the segments in the correct order current_time = 0 final_audio = AudioSegment.empty() srt_content = "" for segment in processed_segments: # Calculate precise timing segment.start_time = current_time segment.end_time = current_time + segment.duration # Add to SRT with precise timing srt_content += ( f"{segment.id}\n" f"{format_time_ms(segment.start_time)} --> {format_time_ms(segment.end_time)}\n" f"{segment.text}\n\n" ) # Add to final audio with precise positioning final_audio = final_audio.append(segment.audio, crossfade=0) # Update timing with precise gap current_time = segment.end_time # Export with high precision srt_path, audio_path = file_manager.create_output_paths() try: # Export with optimized quality settings and compression export_params = { 'format': 'mp3', 'bitrate': '192k', # Reduced from 320k but still high quality 'parameters': [ '-ar', '44100', # Standard sample rate '-ac', '2', # Stereo '-compression_level', '0', # Best compression '-qscale:a', '2' # High quality VBR encoding ] } final_audio.export(audio_path, **export_params) with open(srt_path, "w", encoding='utf-8') as f: f.write(srt_content) except Exception as e: if progress_callback: progress_callback(1.0, f"Error exporting final files: {str(e)}") raise TTSError(f"Failed to export final files: {str(e)}") if progress_callback: progress_callback(1.0, "Complete!") return srt_path, audio_path # IMPROVEMENT 4: Progress Reporting with proper error handling for older Gradio versions async def process_text_with_progress( text, pitch, rate, voice, words_per_line, lines_per_segment, parallel_processing, progress=gr.Progress() ): # Input validation if not text or text.strip() == "": # Return None for file/audio outputs, and use gr.update for error_output and download_link return None, None, None, gr.update(value="Please enter some text to convert to speech.", visible=True), gr.update(value="", visible=False) # Format pitch and rate strings pitch_str = f"{pitch:+d}Hz" if pitch != 0 else "+0Hz" rate_str = f"{rate:+d}%" if rate != 0 else "+0%" try: # Start progress tracking progress(0, "Preparing text...") def update_progress(value, status): progress(value, status) srt_path, audio_path = await generate_accurate_srt( text, voice_options[voice], rate_str, pitch_str, words_per_line, lines_per_segment, progress_callback=update_progress, parallel=parallel_processing ) # If successful, return results and hide error_output, show download_link return srt_path, audio_path, audio_path, gr.update(value="", visible=False), gr.update(value=create_download_link(audio_path), visible=True) except TTSError as e: # Return None for file/audio outputs, show error_output, hide download_link return None, None, None, gr.update(value=f"TTS Error: {str(e)}", visible=True), gr.update(value="", visible=False) except Exception as e: # Return None for file/audio outputs, show error_output, hide download_link return None, None, None, gr.update(value=f"Unexpected error: {str(e)}", visible=True), gr.update(value="", visible=False) # Voice options dictionary voice_options = { "Andrew Male": "en-US-AndrewNeural", "Jenny Female": "en-US-JennyNeural", "Guy Male": "en-US-GuyNeural", "Ana Female": "en-US-AnaNeural", "Aria Female": "en-US-AriaNeural", "Brian Male": "en-US-BrianNeural", "Christopher Male": "en-US-ChristopherNeural", "Eric Male": "en-US-EricNeural", "Michelle Male": "en-US-MichelleNeural", "Roger Male": "en-US-RogerNeural", "Natasha Female": "en-AU-NatashaNeural", "William Male": "en-AU-WilliamNeural", "Clara Female": "en-CA-ClaraNeural", "Liam Female ": "en-CA-LiamNeural", "Libby Female": "en-GB-LibbyNeural", "Maisie": "en-GB-MaisieNeural", "Ryan": "en-GB-RyanNeural", "Sonia": "en-GB-SoniaNeural", "Thomas": "en-GB-ThomasNeural", "Sam": "en-HK-SamNeural", "Yan": "en-HK-YanNeural", "Connor": "en-IE-ConnorNeural", "Emily": "en-IE-EmilyNeural", "Neerja": "en-IN-NeerjaNeural", "Prabhat": "en-IN-PrabhatNeural", "Asilia": "en-KE-AsiliaNeural", "Chilemba": "en-KE-ChilembaNeural", "Abeo": "en-NG-AbeoNeural", "Ezinne": "en-NG-EzinneNeural", "Mitchell": "en-NZ-MitchellNeural", "James": "en-PH-JamesNeural", "Rosa": "en-PH-RosaNeural", "Luna": "en-SG-LunaNeural", "Wayne": "en-SG-WayneNeural", "Elimu": "en-TZ-ElimuNeural", "Imani": "en-TZ-ImaniNeural", "Leah": "en-ZA-LeahNeural", "Luke": "en-ZA-LukeNeural" # Add other voices as needed } # Register cleanup on exit import atexit atexit.register(file_manager.cleanup_all) # Create Gradio interface with gr.Blocks(title="Advanced TTS with Configurable SRT Generation") as app: gr.Markdown("# Advanced TTS with Configurable SRT Generation") gr.Markdown("Generate perfectly synchronized audio and subtitles with natural speech patterns.") with gr.Row(): with gr.Column(scale=3): text_input = gr.Textbox(label="Enter Text", lines=10, placeholder="Enter your text here...") with gr.Column(scale=2): voice_dropdown = gr.Dropdown( label="Select Voice", choices=list(voice_options.keys()), value="Jenny Female" ) pitch_slider = gr.Slider( label="Pitch Adjustment (Hz)", minimum=-10, maximum=10, value=0, step=1 ) rate_slider = gr.Slider( label="Rate Adjustment (%)", minimum=-25, maximum=25, value=0, step=1 ) with gr.Row(): with gr.Column(): words_per_line = gr.Slider( label="Words per Line", minimum=3, maximum=12, value=6, step=1, info="Controls how many words appear on each line of the subtitle" ) with gr.Column(): lines_per_segment = gr.Slider( label="Lines per Segment", minimum=1, maximum=4, value=2, step=1, info="Controls how many lines appear in each subtitle segment" ) with gr.Column(): parallel_processing = gr.Checkbox( label="Enable Parallel Processing", value=True, info="Process multiple segments simultaneously for faster conversion (recommended for longer texts)" ) submit_btn = gr.Button("Generate Audio & Subtitles") # Add error message component # Initialize error_output as hidden, and it will be shown/hidden via gr.update error_output = gr.Textbox(label="Status", interactive=False, visible=False) with gr.Row(): with gr.Column(): audio_output = gr.Audio(label="Preview Audio") with gr.Column(): srt_file = gr.File(label="Download SRT") # The download_link HTML component will contain an tag with target="_blank" # This ensures that when the generated audio/SRT is downloaded via this link, # it will open in a new browser tab. # Initialize download_link as hidden, and it will be shown/hidden via gr.update download_link = gr.HTML(elem_classes="download-btn", visible=False) # The audio_file component is typically for direct download via Gradio's file handling, # which might not open a new tab depending on browser settings. # The HTML download_link provides more control over opening in a new tab. audio_file = gr.File(label="Download Audio (Direct)") # Handle button click with manual error handling instead of .catch() # When submit_btn is clicked, it calls process_text_with_progress. # This function processes the inputs and updates the outputs on the *current* Gradio page. # It does NOT open a new page itself. # The 'download_link' HTML output, however, contains an tag designed to open in a new tab. submit_btn.click( fn=process_text_with_progress, inputs=[ text_input, pitch_slider, rate_slider, voice_dropdown, words_per_line, lines_per_segment, parallel_processing ], outputs=[ srt_file, audio_file, audio_output, error_output, download_link ], api_name="generate" ) if __name__ == "__main__": app.launch()