Spaces:
Runtime error
Runtime error
| from __future__ import annotations | |
| import logging | |
| import os | |
| import random | |
| import sys | |
| import tempfile | |
| import gradio as gr | |
| import imageio | |
| import numpy as np | |
| import PIL.Image | |
| import torch | |
| import tqdm.auto | |
| from diffusers import (DDIMPipeline, DDIMScheduler, DDPMPipeline, | |
| DiffusionPipeline, PNDMPipeline, PNDMScheduler) | |
| HF_TOKEN = os.environ['HF_TOKEN'] | |
| formatter = logging.Formatter( | |
| '[%(asctime)s] %(name)s %(levelname)s: %(message)s', | |
| datefmt='%Y-%m-%d %H:%M:%S') | |
| stream_handler = logging.StreamHandler(stream=sys.stdout) | |
| stream_handler.setLevel(logging.INFO) | |
| stream_handler.setFormatter(formatter) | |
| logger = logging.getLogger(__name__) | |
| logger.setLevel(logging.INFO) | |
| logger.propagate = False | |
| logger.addHandler(stream_handler) | |
| class Model: | |
| MODEL_NAMES = [ | |
| 'ddpm-128-exp000', | |
| ] | |
| def __init__(self, device: str | torch.device): | |
| self.device = torch.device(device) | |
| self._download_all_models() | |
| self.model_name = self.MODEL_NAMES[0] | |
| self.scheduler_type = 'DDIM' | |
| self.pipeline = self._load_pipeline(self.model_name, | |
| self.scheduler_type) | |
| self.rng = random.Random() | |
| self.real_esrgan = gr.Interface.load('spaces/hysts/Real-ESRGAN-anime') | |
| def _load_pipeline(model_name: str, | |
| scheduler_type: str) -> DiffusionPipeline: | |
| repo_id = f'hysts/diffusers-anime-faces-{model_name}' | |
| if scheduler_type == 'DDPM': | |
| pipeline = DDPMPipeline.from_pretrained(repo_id, | |
| use_auth_token=HF_TOKEN) | |
| elif scheduler_type == 'DDIM': | |
| pipeline = DDIMPipeline.from_pretrained(repo_id, | |
| use_auth_token=HF_TOKEN) | |
| pipeline.scheduler = DDIMScheduler.from_config( | |
| repo_id, subfolder='scheduler', use_auth_token=HF_TOKEN) | |
| elif scheduler_type == 'PNDM': | |
| pipeline = PNDMPipeline.from_pretrained(repo_id, | |
| use_auth_token=HF_TOKEN) | |
| pipeline.scheduler = PNDMScheduler.from_config( | |
| repo_id, subfolder='scheduler', use_auth_token=HF_TOKEN) | |
| else: | |
| raise ValueError | |
| return pipeline | |
| def set_pipeline(self, model_name: str, scheduler_type: str) -> None: | |
| logger.info('--- set_pipeline ---') | |
| logger.info(f'{model_name=}, {scheduler_type=}') | |
| if model_name == self.model_name and scheduler_type == self.scheduler_type: | |
| logger.info('Skipping') | |
| logger.info('--- done ---') | |
| return | |
| self.model_name = model_name | |
| self.scheduler_type = scheduler_type | |
| self.pipeline = self._load_pipeline(model_name, scheduler_type) | |
| logger.info('--- done ---') | |
| def _download_all_models(self) -> None: | |
| for name in self.MODEL_NAMES: | |
| self._load_pipeline(name, 'DDPM') | |
| def generate(self, | |
| seed: int, | |
| num_steps: int, | |
| num_images: int = 1) -> list[PIL.Image.Image]: | |
| logger.info('--- generate ---') | |
| logger.info(f'{seed=}, {num_steps=}') | |
| torch.manual_seed(seed) | |
| if self.scheduler_type == 'DDPM': | |
| res = self.pipeline(batch_size=num_images, | |
| torch_device=self.device)['sample'] | |
| elif self.scheduler_type in ['DDIM', 'PNDM']: | |
| res = self.pipeline(batch_size=num_images, | |
| torch_device=self.device, | |
| num_inference_steps=num_steps)['sample'] | |
| else: | |
| raise ValueError | |
| logger.info('--- done ---') | |
| return res | |
| def postprocess(sample: torch.Tensor) -> np.ndarray: | |
| res = (sample / 2 + 0.5).clamp(0, 1) | |
| res = (res * 255).to(torch.uint8) | |
| res = res.cpu().permute(0, 2, 3, 1).numpy() | |
| return res | |
| def generate_with_video(self, seed: int, | |
| num_steps: int) -> tuple[PIL.Image.Image, str]: | |
| logger.info('--- generate_with_video ---') | |
| if self.scheduler_type == 'DDPM': | |
| num_steps = 1000 | |
| fps = 100 | |
| else: | |
| fps = 10 | |
| logger.info(f'{seed=}, {num_steps=}') | |
| model = self.pipeline.unet.to(self.device) | |
| scheduler = self.pipeline.scheduler | |
| scheduler.set_timesteps(num_inference_steps=num_steps) | |
| input_shape = (1, model.config.in_channels, model.config.sample_size, | |
| model.config.sample_size) | |
| torch.manual_seed(seed) | |
| out_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) | |
| writer = imageio.get_writer(out_file.name, fps=fps) | |
| sample = torch.randn(input_shape).to(self.device) | |
| for t in tqdm.auto.tqdm(scheduler.timesteps): | |
| out = model(sample, t)['sample'] | |
| sample = scheduler.step(out, t, sample)['prev_sample'] | |
| res = self.postprocess(sample)[0] | |
| writer.append_data(res) | |
| writer.close() | |
| logger.info('--- done ---') | |
| return PIL.Image.fromarray(res), out_file.name | |
| def superresolve(self, image: PIL.Image.Image) -> PIL.Image.Image: | |
| logger.info('--- superresolve ---') | |
| with tempfile.NamedTemporaryFile(suffix='.png') as f: | |
| image.save(f.name) | |
| out_file = self.real_esrgan(f.name) | |
| logger.info('--- done ---') | |
| return PIL.Image.open(out_file) | |
| def run(self, model_name: str, scheduler_type: str, num_steps: int, | |
| randomize_seed: bool, | |
| seed: int) -> tuple[PIL.Image.Image, PIL.Image.Image, int, str]: | |
| self.set_pipeline(model_name, scheduler_type) | |
| if scheduler_type == 'PNDM': | |
| num_steps = max(4, min(num_steps, 100)) | |
| if randomize_seed: | |
| seed = self.rng.randint(0, 100000) | |
| res, filename = self.generate_with_video(seed, num_steps) | |
| superresolved = self.superresolve(res) | |
| return superresolved, res, seed, filename | |
| def to_grid(images: list[PIL.Image.Image], | |
| ncols: int = 2) -> PIL.Image.Image: | |
| images = [np.asarray(image) for image in images] | |
| nrows = (len(images) + ncols - 1) // ncols | |
| h, w = images[0].shape[:2] | |
| if (d := nrows * ncols - len(images)) > 0: | |
| images += [np.full((h, w, 3), 255, dtype=np.uint8)] * d | |
| grid = np.asarray(images).reshape(nrows, ncols, h, w, 3).transpose( | |
| 0, 2, 1, 3, 4).reshape(nrows * h, ncols * w, 3) | |
| return PIL.Image.fromarray(grid) | |
| def run_simple(self) -> tuple[PIL.Image.Image, PIL.Image.Image]: | |
| self.set_pipeline(self.MODEL_NAMES[0], 'PNDM') | |
| seed = self.rng.randint(0, np.iinfo(np.uint32).max + 1) | |
| images = self.generate(seed, num_steps=10, num_images=4) | |
| superresolved = [self.superresolve(image) for image in images] | |
| return self.to_grid(superresolved, 2), self.to_grid(images, 2) | |