Spaces:
Running
Running
File size: 8,550 Bytes
c2b1f56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import json
import os
import re
from datetime import datetime
from db.helpers import get_research_stats
def save_feedback(prompt, output, clarity, depth, complexity, comments, user_type=None, student_level=None):
"""
Save user feedback to a JSONL file with additional metadata
"""
# Create feedback directory if it doesn't exist
os.makedirs("data/feedback", exist_ok=True)
feedback_data = {
"timestamp": datetime.now().isoformat(),
"prompt": prompt,
"output": output,
"feedback": {
"clarity": clarity,
"depth": depth,
"complexity": complexity,
"comments": comments
},
"metadata": {
"user_type": user_type,
"student_level": student_level
}
}
# Save to JSONL file
feedback_file = "data/feedback/feedback.jsonl"
try:
with open(feedback_file, "a", encoding="utf-8") as f:
f.write(json.dumps(feedback_data, ensure_ascii=False) + "\n")
print(f"β
Feedback saved to {feedback_file}")
return True
except Exception as e:
print(f"β Error saving feedback: {e}")
return False
def load_feedback_data():
"""Load all feedback data for analysis"""
feedback_file = "data/feedback/feedback.jsonl"
if not os.path.exists(feedback_file):
return []
feedback_data = []
try:
with open(feedback_file, "r", encoding="utf-8") as f:
for line in f:
if line.strip():
feedback_data.append(json.loads(line.strip()))
return feedback_data
except Exception as e:
print(f"β Error loading feedback data: {e}")
return []
def get_feedback_stats():
"""Get basic statistics about collected feedback"""
feedback_data = load_feedback_data()
if not feedback_data:
return {
"total_feedback": 0,
"average_clarity": 0,
"average_depth": 0,
"complexity_distribution": {},
"user_type_distribution": {}
}
total = len(feedback_data)
clarity_sum = 0
depth_sum = 0
complexity_counts = {}
user_type_counts = {}
for entry in feedback_data:
clarity_sum += entry["feedback"]["clarity"]
depth_sum += entry["feedback"]["depth"]
complexity = entry["feedback"]["complexity"]
complexity_counts[complexity] = complexity_counts.get(complexity, 0) + 1
user_type = entry["metadata"].get("user_type", "unknown")
user_type_counts[user_type] = user_type_counts.get(user_type, 0) + 1
return {
"total_feedback": total,
"average_clarity": round(clarity_sum / total, 2) if total > 0 else 0,
"average_depth": round(depth_sum / total, 2) if total > 0 else 0,
"complexity_distribution": complexity_counts,
"user_type_distribution": user_type_counts
}
def is_high_quality_feedback(feedback_entry):
"""
SIMPLEST VERSION: Length-based filtering after removing emojis
Only uses high-quality, "just right" feedback for training
"""
feedback = feedback_entry["feedback"]
# Quality thresholds
MIN_CLARITY = 4
MIN_DEPTH = 4
MIN_COMMENT_LENGTH = 25 # Substantive comments after emoji removal
MIN_WORD_COUNT = 4 # Minimum words for substance
# Check ratings (must be high quality)
if feedback["clarity"] < MIN_CLARITY or feedback["depth"] < MIN_DEPTH:
return False
# Check complexity (we want "Just right" examples to replicate)
if feedback["complexity"] != "Just right":
return False
# Check comments if provided
comments = feedback.get("comments", "").strip()
if comments:
# Remove emojis first, then check length
emoji_pattern = re.compile(
r'[\U0001F600-\U0001F64F\U0001F300-\U0001F5FF\U0001F680-\U0001F6FF\U0001F1E0-\U0001F1FF\U00002600-\U000027BF\U0001F900-\U0001F9FF\U0001F018-\U0001F270πππππβ€οΈπ₯]',
flags=re.UNICODE
)
text_without_emojis = emoji_pattern.sub('', comments).strip()
# Now apply length check on the cleaned text
if len(text_without_emojis) < MIN_COMMENT_LENGTH:
return False
# Check word count for minimal substance
word_count = len(text_without_emojis.split())
if word_count < MIN_WORD_COUNT:
return False
return True
def prepare_training_data():
"""
Prepare high-quality feedback for model fine-tuning
Returns structured training examples
"""
all_feedback = load_feedback_data()
training_examples = []
skipped_count = 0
for feedback in all_feedback:
if is_high_quality_feedback(feedback):
# Create training example from high-quality feedback
training_example = {
"instruction": feedback["prompt"],
"input": f"Student Level: {feedback['metadata'].get('student_level', 'Unknown')}",
"output": feedback["output"],
"metadata": {
"user_type": feedback["metadata"].get("user_type"),
"clarity_score": feedback["feedback"]["clarity"],
"depth_score": feedback["feedback"]["depth"],
"comments": feedback["feedback"].get("comments", "")
}
}
training_examples.append(training_example)
else:
skipped_count += 1
print(f"β
Prepared {len(training_examples)} training examples (skipped {skipped_count} low-quality)")
return training_examples
def get_training_data_stats():
"""
Get statistics about prepared training data
"""
training_data = prepare_training_data()
if not training_data:
return {
"total_training_examples": 0,
"user_type_breakdown": {},
"average_scores": {"clarity": 0, "depth": 0}
}
user_type_counts = {}
clarity_sum = 0
depth_sum = 0
for example in training_data:
user_type = example["metadata"].get("user_type", "unknown")
user_type_counts[user_type] = user_type_counts.get(user_type, 0) + 1
clarity_sum += example["metadata"]["clarity_score"]
depth_sum += example["metadata"]["depth_score"]
return {
"total_training_examples": len(training_data),
"user_type_breakdown": user_type_counts,
"average_scores": {
"clarity": round(clarity_sum / len(training_data), 2),
"depth": round(depth_sum / len(training_data), 2)
}
}
def export_training_data(output_file="data/training/training_data.jsonl"):
"""
Export filtered training data to file for fine-tuning
"""
training_data = prepare_training_data()
if not training_data:
print("β No high-quality training data available")
return False
# Create directory if it doesn't exist
os.makedirs(os.path.dirname(output_file), exist_ok=True)
try:
with open(output_file, "w", encoding="utf-8") as f:
for example in training_data:
# Remove metadata for actual training
training_example = {
"instruction": example["instruction"],
"input": example["input"],
"output": example["output"]
}
f.write(json.dumps(training_example, ensure_ascii=False) + "\n")
print(f"β
Exported {len(training_data)} training examples to {output_file}")
return True
except Exception as e:
print(f"β Error exporting training data: {e}")
return False
def get_research_progress():
"""Fetch research progress from PostgreSQL"""
stats = get_research_stats()
return {
"total_feedback": stats["total_feedback"],
"high_quality_examples": stats["high_quality_feedback"],
"conversion_rate": stats["conversion_rate"],
"average_quality": stats["average_scores"],
"user_breakdown": stats["user_type_breakdown"]
}
|