File size: 68,811 Bytes
7c3387d
 
 
 
 
 
 
 
 
 
 
 
735a2dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c3387d
735a2dc
7c3387d
 
735a2dc
 
 
7c3387d
735a2dc
 
 
 
 
 
 
 
7c3387d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
735a2dc
 
7c3387d
 
 
735a2dc
 
 
 
7c3387d
 
735a2dc
 
7c3387d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
import os
import time
import random
import requests
from openai import OpenAI
from typing import Dict, List, Optional
import logging

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# def get_api_keys(service_name: str, key_names: List[str]) -> List[str]:
#     """Get API keys from multiple sources"""
#     keys = []
    
#     # 1. HuggingFace Spaces Secrets (Primary)
#     for key_name in key_names:
#         # Try HF-specific naming first
#         hf_key_name = f"HF_{service_name.upper()}_{key_name}"
#         key = os.getenv(hf_key_name)
#         if key and key.strip():
#             keys.append(key.strip())
#             logger.info(f"βœ… Found {service_name} key in HuggingFace secrets")
#             break  # Use first valid key
    
#     # 2. Standard Environment Variables (fallback)
#     if not keys:
#         for key_name in key_names:
#             key = os.getenv(key_name) or os.getenv(key_name.upper())
#             if key and key.strip():
#                 keys.append(key.strip())
#                 logger.info(f"βœ… Found {service_name} key in environment")
#                 break
    
#     # 3. Streamlit Secrets (last resort)
#     if not keys:
#         try:
#             import streamlit as st
#             if hasattr(st, 'secrets') and service_name in st.secrets:
#                 secrets = st.secrets[service_name]
#                 for key_name in key_names:
#                     key = secrets.get(key_name)
#                     if key and key.strip():
#                         keys.append(key.strip())
#                         logger.info(f"βœ… Found {service_name} key in Streamlit secrets")
#                         break
#         except Exception:
#             pass
    
#     if not keys:
#         logger.warning(f"❌ No {service_name} API keys found")
    
#     return keys

def get_api_keys(service_name: str, key_names: List[str]) -> List[str]:
    """Get API keys from multiple sources with priority for HuggingFace Spaces"""
    keys = []
    
    # 1. HuggingFace Spaces Secrets (Primary) - multiple keys
    for i in range(1, 6):  # Check for HF_GROQ_API_KEY_1 through HF_GROQ_API_KEY_5
        hf_key_name = f"HF_{service_name.upper()}_API_KEY_{i}"
        key = os.getenv(hf_key_name)
        if key and key.strip():
            keys.append(key.strip())
            logger.info(f"βœ… Found {service_name} key {i} in HuggingFace secrets")
    
    # Also check for single key (backward compatibility)
    if not keys:
        single_key_name = f"HF_{service_name.upper()}_API_KEY"
        key = os.getenv(single_key_name)
        if key and key.strip():
            keys.append(key.strip())
            logger.info(f"βœ… Found {service_name} key in HuggingFace secrets")
    
    # 2. Standard Environment Variables (fallback)
    if not keys:
        for key_name in key_names:
            key = os.getenv(key_name) or os.getenv(key_name.upper())
            if key and key.strip():
                keys.append(key.strip())
                logger.info(f"βœ… Found {service_name} key in environment")
    
    # 3. Streamlit Secrets (last resort)
    if not keys:
        try:
            import streamlit as st
            if hasattr(st, 'secrets') and service_name in st.secrets:
                secrets = st.secrets[service_name]
                for key_name in key_names:
                    key = secrets.get(key_name)
                    if key and key.strip():
                        keys.append(key.strip())
                        logger.info(f"βœ… Found {service_name} key in Streamlit secrets")
        except Exception:
            pass
    
    if not keys:
        logger.warning(f"❌ No {service_name} API keys found")
    else:
        logger.info(f"βœ… Found {len(keys)} {service_name} API keys")
    
    return keys

# def get_groq_api_keys():
#     """Get Groq API keys for all environments"""
#     return get_api_keys("groq", ["api_key", "api_key_1", "api_key_2"])

def get_groq_api_keys():
    """Get Groq API keys for all environments"""
    # Look for multiple HF keys first, then fallback
    return get_api_keys("groq", ["api_key", "api_key_1", "api_key_2", "api_key_3"])

def get_ollama_url():
    """Get Ollama URL from multiple sources"""
    
    # 1. HuggingFace Spaces
    hf_url = os.getenv("HF_OLLAMA_URL")
    if hf_url:
        # Clean the URL - remove quotes if present
        hf_url = hf_url.strip('"\'')
        logger.info("βœ… Found Ollama URL in HuggingFace secrets")
        return hf_url
    
    # 2. Environment Variables
    env_url = os.getenv("OLLAMA_URL") or os.getenv("MODEL_URL")
    if env_url:
        env_url = env_url.strip('"\'')
        logger.info("βœ… Found Ollama URL in environment")
        return env_url
    
    # 3. Streamlit Secrets
    try:
        import streamlit as st
        if hasattr(st, 'secrets') and 'ollama' in st.secrets:
            url = st.secrets["ollama"].get("url")
            if url:
                url = url.strip('"\'')
                logger.info("βœ… Found Ollama URL in Streamlit secrets")
                return url
    except (ImportError, AttributeError):
        pass
    
    logger.warning("⚠️ No Ollama URL configured - local models will not be available")
    return None
    
class MultiGroqGenerator:
    def __init__(self):
        self.providers = self._initialize_groq_providers()
        self.models = self._get_best_models()
        self.max_retries = 3
        self.retry_delay = 2  # seconds
        
    def _initialize_groq_providers(self):
        """Initialize multiple Groq API providers with different keys"""
        providers = []
        
        # Get all Groq API keys
        groq_keys = get_groq_api_keys()
        
        # Filter out None values and create providers
        for i, key in enumerate(groq_keys):
            if key and key.strip():
                providers.append({
                    'name': f'Groq-{i+1}',
                    'client': OpenAI(
                        api_key=key.strip(),
                        base_url="https://api.groq.com/openai/v1"
                    ),
                    'weight': 10,
                    'fail_count': 0,
                    'last_used': 0
                })
        
        if not providers:
            logger.warning("❌ No Groq API keys found")
            return []
            
        logger.info(f"βœ… Initialized {len(providers)} Groq providers")
        return providers
    
    def _get_best_models(self):
        """Select optimal models for educational content"""
        return [
            {
                'id': 'llama-3.3-70b-versatile',
                'name': 'Llama 3.3 70B',
                'weight': 10,
                'max_tokens': 32768,
                'description': 'Best for complex explanations'
            },
            {
                'id': 'meta-llama/llama-4-maverick-17b-128e-instruct', 
                'name': 'Llama 4 Maverick 17B',
                'weight': 9,
                'max_tokens': 128000,
                'description': 'Large context for big documents'
            },
            {
                'id': 'llama-3.1-8b-instant',
                'name': 'Llama 3.1 8B Instant',
                'weight': 8,
                'max_tokens': 32768,
                'description': 'Fast for most content'
            },
        ]
    
    def _select_provider(self):
        """Select provider based on weight and fail history"""
        if not self.providers:
            return None
            
        available_providers = [
            p for p in self.providers 
            if p['fail_count'] < 3 and (time.time() - p['last_used']) > 30
        ]
        
        if not available_providers:
            available_providers = self.providers
            for p in available_providers:
                p['fail_count'] = max(0, p['fail_count'] - 1)
        
        weights = [p['weight'] for p in available_providers]
        selected = random.choices(available_providers, weights=weights, k=1)[0]
        selected['last_used'] = time.time()
        return selected
    
    def _select_model(self, prompt_length: int):
        """Select optimal model based on prompt size"""
        approx_tokens = prompt_length // 4
        
        if approx_tokens > 20000:
            return self.models[1]  # Maverick for huge docs
        elif approx_tokens > 10000:
            return self.models[1]  # Maverick for large docs
        elif approx_tokens > 6000:
            return self.models[0]  # 70B for medium-large
        elif approx_tokens > 3000:
            return self.models[0]  # 70B for quality
        else:
            return self.models[2]  # 8B for speed
    
    def generate(self, prompt: str) -> str:
        """Generate content with automatic failover"""
        if not self.providers:
            return "❌ Groq Error: No API keys configured. Please set GROQ_API_KEY in HuggingFace secrets or environment variables."
        
        last_error = None
        prompt_length = len(prompt)
        
        for attempt in range(self.max_retries + 1):
            provider = self._select_provider()
            model = self._select_model(prompt_length)
            
            if not provider:
                return "❌ Groq Error: No available providers"
            
            try:
                logger.info(f"πŸ”„ Attempt {attempt + 1} with {provider['name']} using {model['name']}...")
                
                result = self._call_groq(provider, model, prompt)
                
                if result and not result.startswith(("[Error", "[RateLimit]", "[Quota]", "[Auth]", "[Empty]", "[ModelNotFound]")):
                    logger.info(f"βœ… Success with {provider['name']} + {model['name']}")
                    provider['weight'] = min(20, provider['weight'] + 1)
                    provider['fail_count'] = max(0, provider['fail_count'] - 1)
                    return result
                else:
                    logger.warning(f"❌ Provider returned: {result}")
                    if "[ModelNotFound]" in result:
                        continue
                    
            except Exception as e:
                last_error = str(e)
                logger.error(f"❌ {provider['name']} + {model['name']} failed: {last_error}")
                provider['weight'] = max(1, provider['weight'] - 2)
                provider['fail_count'] += 1
                
                if attempt < self.max_retries:
                    delay = self.retry_delay * (2 ** attempt)
                    logger.info(f"⏰ Waiting {delay}s before retry...")
                    time.sleep(delay)
        
        return self._fallback_generate(prompt)
    
    def generate_large_content(self, prompt: str) -> str:
        """Handle large content generation for Groq - compatibility method"""
        logger.info("πŸ”· Using Groq for large content generation...")
        
        # For Groq, we can handle large content directly due to large context windows
        # Just use the normal generate method with optimized model selection
        prompt_length = len(prompt)
        
        if prompt_length > 20000:  # Very large prompt
            logger.info("πŸ“ Large prompt detected, optimizing for Groq Maverick...")
            # Temporarily prioritize Maverick for large contexts
            original_models = self.models.copy()
            self.models = [self.models[1]]  # Maverick has 128K context
            try:
                result = self.generate(prompt)
                return result
            finally:
                self.models = original_models  # Restore original models
        else:
            # Use normal generation
            return self.generate(prompt)
    
    def _fallback_generate(self, prompt: str) -> str:
        """Fallback generation with simpler model selection"""
        logger.info("πŸ”„ Trying fallback generation...")
        
        fallback_models = [self.models[2], self.models[0]]
        
        for model in fallback_models:
            for provider in self.providers:
                try:
                    logger.info(f"πŸ”„ Fallback with {provider['name']} using {model['name']}...")
                    result = self._call_groq(provider, model, prompt)
                    
                    if result and not result.startswith(("[Error", "[RateLimit]", "[Quota]", "[Auth]", "[Empty]", "[ModelNotFound]")):
                        logger.info(f"βœ… Fallback success with {provider['name']} + {model['name']}")
                        return result
                except Exception as e:
                    logger.error(f"❌ Fallback failed: {e}")
                    continue
        
        return self._get_user_friendly_error("All models failed")
    
    def _call_groq(self, provider, model, prompt: str) -> str:
        """Call Groq API with specific provider and model"""
        try:
            prompt_tokens_approx = len(prompt) // 4
            available_tokens = model['max_tokens'] - prompt_tokens_approx - 500
            max_response_tokens = max(1000, min(8000, available_tokens))
            
            response = provider['client'].chat.completions.create(
                model=model['id'],
                messages=[{"role": "user", "content": prompt}],
                temperature=0.7,
                max_tokens=max_response_tokens,
                top_p=0.9
            )
            
            if (response and response.choices and len(response.choices) > 0 and 
                response.choices[0].message and response.choices[0].message.content):
                
                content = response.choices[0].message.content.strip()
                return content if content else "[Empty] No content generated"
            else:
                return "[Empty] Invalid response structure"
                
        except Exception as e:
            error_msg = str(e).lower()
            
            if "rate limit" in error_msg or "429" in error_msg:
                return f"[RateLimit] {provider['name']} rate limit exceeded"
            elif "quota" in error_msg:
                return f"[Quota] {provider['name']} quota exceeded"
            elif "authentication" in error_msg:
                return f"[Auth] {provider['name']} authentication failed"
            elif "context length" in error_msg:
                return f"[Length] {provider['name']} content too long"
            elif "model not found" in error_msg:
                return f"[ModelNotFound] {provider['name']}: {str(e)}"
            else:
                return f"[Error] {provider['name']}: {str(e)}"
    
    def _get_user_friendly_error(self, technical_error: str) -> str:
        """Convert technical errors to user-friendly messages"""
        error_lower = technical_error.lower()
        
        if "rate limit" in error_lower:
            return "🚫 **Service Busy** - Please wait a few minutes and try again"
        elif "quota" in error_lower:
            return "πŸ“Š **Daily Limit Reached** - Try again tomorrow"
        elif "length" in error_lower:
            return "πŸ“ **Content Too Large** - Please break into smaller sections"
        else:
            return "❌ **Temporary Issue** - Please try again shortly"

    def get_service_status(self) -> dict:
        """Get current status of all providers"""
        status = {
            'total_providers': len(self.providers),
            'healthy_providers': len([p for p in self.providers if p['fail_count'] < 2]),
            'providers': [],
            'models': [m['name'] for m in self.models]
        }
        
        for provider in self.providers:
            if provider['fail_count'] >= 3:
                status_text = "πŸ”΄ Limited"
            elif provider['fail_count'] >= 1:
                status_text = "🟑 Slow"
            else:
                status_text = "🟒 Good"
                
            status['providers'].append({
                'name': provider['name'],
                'status': status_text,
                'failures': provider['fail_count']
            })
        
        return status


class HFGenerator:
    """Phi-3 Generator with Auto-Pull, Smart Chunking, and Context Preservation"""
    
    def __init__(self, base_url: str = None):
        # Use environment variable or Streamlit secret as default
        self.base_url = base_url or get_ollama_url()
        self.model = "phi3:mini"
        self.current_requests = 0
        self.max_concurrent = 2
        self.model_available = False
        
        # Only try to connect if base_url is provided
        if self.base_url:
            self._ensure_model_available()
        else:
            logger.warning("⚠️ Ollama URL not configured - Phi-3 will not be available")
    
    def _ensure_model_available(self):
        """Check if model is available and pull if needed"""
        try:
            response = requests.get(f"{self.base_url}/api/tags", timeout=10)
            if response.status_code == 200:
                models = response.json().get('models', [])
                self.model_available = any(model['name'] == self.model for model in models)
                
                if not self.model_available:
                    logger.info(f"πŸ”„ Model {self.model} not found, pulling...")
                    self._pull_model()
                else:
                    logger.info(f"βœ… Model {self.model} is available")
            else:
                logger.warning(f"❌ Could not check models: {response.status_code}")
        except Exception as e:
            logger.error(f"❌ Error checking models: {e}")
    
    def _pull_model(self):
        """Pull the Phi-3 model if not available"""
        try:
            logger.info(f"πŸ“₯ Pulling {self.model}... This may take a few minutes.")
            
            payload = {"name": self.model}
            response = requests.post(
                f"{self.base_url}/api/pull", 
                json=payload, 
                timeout=300  # 5 minute timeout for pull
            )
            
            if response.status_code == 200:
                logger.info(f"βœ… Successfully pulled {self.model}")
                self.model_available = True
                return True
            else:
                logger.error(f"❌ Failed to pull model: {response.text}")
                return False
                
        except Exception as e:
            logger.error(f"❌ Error pulling model: {e}")
            return False
    
    def _estimate_tokens(self, text: str) -> int:
        """Rough token estimation"""
        return len(text) // 4
    
    def _chunk_content(self, content: str, max_tokens: int = 2500) -> list:
        """Split large content into manageable chunks"""
        paragraphs = content.split('\n\n')
        chunks = []
        current_chunk = ""
        current_tokens = 0
        
        for paragraph in paragraphs:
            para_tokens = self._estimate_tokens(paragraph)
            
            if para_tokens > max_tokens:
                sentences = paragraph.split('. ')
                for sentence in sentences:
                    sent_tokens = self._estimate_tokens(sentence)
                    if current_tokens + sent_tokens > max_tokens:
                        if current_chunk:
                            chunks.append(current_chunk.strip())
                        current_chunk = sentence
                        current_tokens = sent_tokens
                    else:
                        current_chunk += " " + sentence
                        current_tokens += sent_tokens
            else:
                if current_tokens + para_tokens > max_tokens:
                    if current_chunk:
                        chunks.append(current_chunk.strip())
                    current_chunk = paragraph
                    current_tokens = para_tokens
                else:
                    current_chunk += "\n\n" + paragraph
                    current_tokens += para_tokens
        
        if current_chunk:
            chunks.append(current_chunk.strip())
            
        return chunks
    
    def _create_context_summary(self, previous_chunks: list) -> str:
        """Create a context summary from previous chunks"""
        if not previous_chunks:
            return ""
        
        context_prompt = f"""
        Here's a summary of previous sections:
        {chr(10).join(previous_chunks)}
        
        Provide a brief summary (2-3 sentences) of key points to help understand the next section.
        """
        
        try:
            payload = {
                "model": self.model,
                "messages": [{"role": "user", "content": context_prompt}],
                "stream": False,
                "options": {
                    "temperature": 0.3,
                    "top_p": 0.8,
                    "num_predict": 200
                }
            }
            
            response = requests.post(f"{self.base_url}/api/chat", json=payload, timeout=30)
            if response.status_code == 200:
                return response.json()['message']['content'].strip()
            return f"Previous sections covered: {', '.join(previous_chunks[:2])}..."
        except Exception:
            return f"Context from {len(previous_chunks)} previous sections"
    
    def _create_chunk_summary(self, content: str) -> str:
        """Create a very brief summary of a chunk's content"""
        try:
            payload = {
                "model": self.model,
                "messages": [{"role": "user", "content": f"Summarize key points in 1-2 sentences: {content}"}],
                "stream": False,
                "options": {
                    "temperature": 0.3,
                    "top_p": 0.8,
                    "num_predict": 100
                }
            }
            
            response = requests.post(f"{self.base_url}/api/chat", json=payload, timeout=20)
            if response.status_code == 200:
                return response.json()['message']['content'].strip()
            return content[:100] + "..."
        except:
            return content[:100] + "..."
    
    def _call_ollama_with_retry(self, payload: dict, max_retries: int = 2) -> Dict:
        """Call Ollama API with auto-pull retry"""
        for attempt in range(max_retries + 1):
            try:
                response = requests.post(
                    f"{self.base_url}/api/chat",
                    json=payload,
                    timeout=60
                )
                
                if response.status_code == 200:
                    return {"success": True, "data": response.json()}
                elif response.status_code == 404 and "not found" in response.text.lower():
                    logger.info(f"πŸ”„ Model not found, attempting to pull... (attempt {attempt + 1})")
                    if self._pull_model():
                        continue  # Retry after successful pull
                    else:
                        return {"success": False, "error": "Failed to pull model"}
                else:
                    return {"success": False, "error": f"API error {response.status_code}: {response.text}"}
                    
            except requests.exceptions.Timeout:
                if attempt < max_retries:
                    logger.info(f"⏰ Timeout, retrying... (attempt {attempt + 1})")
                    time.sleep(2)
                else:
                    return {"success": False, "error": "Request timeout"}
            except Exception as e:
                return {"success": False, "error": f"Connection failed: {str(e)}"}
        
        return {"success": False, "error": "All retries failed"}
    
    def generate(self, prompt: str, user_type: str = "student", 
                 academic_level: str = "undergraduate", 
                 content_type: str = "simplified_explanation") -> str:
        """Generate educational content with auto-pull and smart features"""
        
        # Check if Ollama is configured
        if not self.base_url:
            return "❌ Phi-3 Error: Ollama URL not configured. Please set MODEL_URL environment variable or add to HuggingFace secrets."
        
        # Check if we need to pull model first
        if not self.model_available:
            logger.info("πŸ”„ Model not available, pulling before generation...")
            if not self._pull_model():
                return f"❌ Phi-3 Error: Phi-3 model is not available and failed to pull. Please check the Ollama server."
        
        estimated_tokens = self._estimate_tokens(prompt)
        
        # Auto-detect large documents and use chunking
        if estimated_tokens > 3000:
            result = self.generate_large_content_with_context(prompt, user_type, academic_level, content_type)
            if isinstance(result, dict):
                return result.get("content", f"❌ Phi-3 Error: {result.get('error', 'Unknown error')}")
            return result
        
        # Queue management
        if self.current_requests >= self.max_concurrent:
            queue_position = self.current_requests - self.max_concurrent + 1
            estimated_wait = queue_position * 7
            return f"❌ Phi-3 Error: Service busy. You're #{queue_position} in queue (~{estimated_wait}s)"
        
        self.current_requests += 1
        try:
            # FIXED: Increased token allocation for complete responses
            if estimated_tokens > 2000:
                max_output_tokens = 2000  # Increased from 500
            elif estimated_tokens > 1000:
                max_output_tokens = 2500  # Increased from 800
            else:
                max_output_tokens = 3000  # Increased from 1000
            
            payload = {
                "model": self.model,
                "messages": [{"role": "user", "content": prompt}],
                "stream": False,
                "options": {
                    "temperature": 0.7,
                    "top_p": 0.9,
                    "num_predict": max_output_tokens
                }
            }
            
            start_time = time.time()
            result = self._call_ollama_with_retry(payload)
            inference_time = time.time() - start_time
            
            if result["success"]:
                data = result["data"]
                content = data['message']['content'].strip()
                
                # Check if content was cut off and retry with more tokens if needed
                if self._is_content_cut_off(content):
                    logger.info("⚠️ Content appears cut off, retrying with more tokens...")
                    payload["options"]["num_predict"] = 4000  # Max tokens for Phi-3
                    retry_result = self._call_ollama_with_retry(payload)
                    
                    if retry_result["success"]:
                        data = retry_result["data"]
                        content = data['message']['content'].strip()
                
                return content
            else:
                return f"❌ Phi-3 Error: {result['error']}"
                
        except Exception as e:
            return f"❌ Phi-3 Error: {str(e)}"
        finally:
            self.current_requests -= 1

    def _is_content_cut_off(self, content: str) -> bool:
        """Check if content appears to be cut off mid-sentence"""
        if not content or len(content.strip()) < 100:
            return True
        
        # Check if it ends with proper punctuation
        if content.strip().endswith(('.', '!', '?', '."', '!"', '?"')):
            return False
        
        # Check if it ends with incomplete sentence markers
        if any(content.strip().endswith(marker) for marker in [',', ';', ':', '-', '–', 'β€”']):
            return True
        
        # Check if it ends with an incomplete word or thought
        last_paragraph = content.strip().split('\n')[-1]
        if len(last_paragraph.split()) < 5:  # Very short last paragraph
            return True
        
        return False
    
    def generate_large_content_with_context(self, prompt: str, user_type: str = "student", 
                                          academic_level: str = "undergraduate", 
                                          content_type: str = "simplified_explanation") -> str:
        """Handle large documents with context preservation"""
        
        estimated_tokens = self._estimate_tokens(prompt)
        
        if estimated_tokens <= 3000:
            return self.generate(prompt, user_type, academic_level, content_type)
        
        chunks = self._chunk_content(prompt, max_tokens=2500)
        
        if len(chunks) > 6:
            return f"❌ Phi-3 Error: Document too large ({estimated_tokens} tokens, {len(chunks)} chunks). Please use Groq or break into smaller sections."
        
        all_results = []
        previous_summaries = []
        
        for i, chunk in enumerate(chunks):
            logger.info(f"πŸ”„ Processing chunk {i+1}/{len(chunks)} with context...")
            
            context_summary = self._create_context_summary(previous_summaries)
            
            if context_summary:
                chunk_prompt = f"""Part {i+1} of {len(chunks)} - Building on previous context:

**PREVIOUS CONTEXT:**
{context_summary}

**CURRENT SECTION:**
{chunk}

Analyze this section while connecting to the overall context."""
            else:
                chunk_prompt = f"""Part {i+1} of {len(chunks)}:

**CONTENT:**
{chunk}

Please analyze this section."""
            
            chunk_result = self.generate(chunk_prompt, user_type, academic_level, content_type)
            
            if "❌ Phi-3 Error:" not in chunk_result:
                chunk_summary = self._create_chunk_summary(chunk_result)
                previous_summaries.append(chunk_summary)
                
                all_results.append({
                    "chunk_number": i+1,
                    "content": chunk_result,
                    "context_used": bool(context_summary)
                })
            else:
                return f"❌ Phi-3 Error: Failed to process chunk {i+1}: {chunk_result}"
            
            if i < len(chunks) - 1:
                time.sleep(1)
        
        # Combine results
        combined_content = "\n\n".join([f"## Part {r['chunk_number']}\n{r['content']}" for r in all_results])
        
        return combined_content
    
    def health_check(self) -> Dict:
        """Comprehensive health check"""
        if not self.base_url:
            return {
                "server_healthy": False,
                "model_available": False,
                "error": "Ollama URL not configured"
            }
            
        try:
            response = requests.get(f"{self.base_url}/api/tags", timeout=10)
            if response.status_code == 200:
                models = response.json().get('models', [])
                model_available = any(model['name'] == self.model for model in models)
                
                return {
                    "server_healthy": True,
                    "model_available": model_available,
                    "available_models": [model['name'] for model in models],
                    "model_required": self.model
                }
            else:
                return {
                    "server_healthy": False,
                    "model_available": False,
                    "error": f"Server returned {response.status_code}"
                }
        except Exception as e:
            return {
                "server_healthy": False,
                "model_available": False,
                "error": str(e)
            }
    
    def get_available_models(self):
        """Get list of available models"""
        try:
            response = requests.get(f"{self.base_url}/api/tags", timeout=10)
            if response.status_code == 200:
                return [model['name'] for model in response.json().get('models', [])]
            return []
        except:
            return []
    
    def get_queue_status(self):
        """Get current queue status"""
        return {
            "current_requests": self.current_requests,
            "max_concurrent": self.max_concurrent,
            "available_slots": max(0, self.max_concurrent - self.current_requests)
        }


# Backward compatibility
class GroqGenerator(MultiGroqGenerator):
    def __init__(self, model="llama-3.3-70b-versatile"):
        super().__init__()


class ModelManager:
    """Unified model manager that handles both Groq and Phi-3 models"""
    
    def __init__(self):
        self.groq_generator = MultiGroqGenerator()
        self.phi3_generator = HFGenerator()
    
    def generate(self, prompt: str, model_choice: str = "phi3", **kwargs) -> str:
        """Generate content using selected model"""
        logger.info(f"🎯 Using model: {model_choice}")
        
        if model_choice == "phi3":
            # Handle Phi-3 generation
            user_type = kwargs.get('user_type', 'student')
            academic_level = kwargs.get('student_level', 'undergraduate')
            content_type = kwargs.get('content_type', 'simplified_explanation')
            
            result = self.phi3_generator.generate(prompt, user_type, academic_level, content_type)
            return result
        else:
            # Use Groq for comparison - check if this is a large content request
            is_large_content = len(prompt) > 8000
            
            if is_large_content:
                return self.groq_generator.generate_large_content(prompt)
            else:
                return self.groq_generator.generate(prompt)
    
    def get_service_status(self) -> dict:
        """Get clean research-focused status"""
        groq_status = self.groq_generator.get_service_status()
        phi3_health = self.phi3_generator.health_check()
        
        # Clean Groq status
        clean_groq_status = {
            'healthy_providers': groq_status['healthy_providers'],
            'total_providers': groq_status['total_providers'],
            'providers': [
                {
                    'name': provider['name'],
                    'failures': provider['failures']
                }
                for provider in groq_status['providers']
            ]
        }
        
        # Enhanced Phi-3 status
        enhanced_phi3_status = {
            'server_healthy': phi3_health['server_healthy'],
            'model_available': phi3_health['model_available'],
            'available_models': phi3_health['available_models'],
            'model_required': phi3_health['model_required']
        }
        
        return {
            "groq": clean_groq_status,
            "phi3": enhanced_phi3_status
        }


# Global model manager instance
model_manager = ModelManager()


# Setup function for your Streamlit app
def setup_generators():
    """Setup both generators with health checks"""
    logger.info("πŸ”§ Setting up generators...")
    
    groq_generator = MultiGroqGenerator()
    
    phi3_generator = HFGenerator()
    phi3_health = phi3_generator.health_check()
    
    logger.info(f"πŸ₯ Phi-3 Health: {phi3_health}")
    
    if not phi3_health["server_healthy"]:
        logger.error("❌ Phi-3 server is not accessible")
    elif not phi3_health["model_available"]:
        logger.info("πŸ”„ Phi-3 model needs to be pulled on first use")
    
    return {
        "groq": groq_generator,
        "phi3": phi3_generator
    }


# Test function
def test_generators():
    """Test both generators"""
    logger.info("πŸ§ͺ Testing Generators...")
    
    generators = setup_generators()
    
    # Test Groq
    logger.info("πŸ”· Testing Groq...")
    groq_result = generators["groq"].generate("Explain photosynthesis briefly")
    if not groq_result.startswith("["):
        logger.info("βœ… Groq working")
    else:
        logger.error(f"❌ Groq failed: {groq_result}")
    
    # Test Phi-3
    logger.info("πŸ”Ά Testing Phi-3...")
    phi3_result = generators["phi3"].generate("Explain photosynthesis briefly")
    if "❌ Phi-3 Error:" not in phi3_result:
        logger.info("βœ… Phi-3 working")
    else:
        logger.error(f"❌ Phi-3 failed: {phi3_result}")
    
    # Test health
    logger.info("πŸ₯ Health Check:")
    logger.info(f"Groq providers: {len(generators['groq'].providers)}")
    logger.info(f"Phi-3 healthy: {generators['phi3'].health_check()}")


if __name__ == "__main__":
    test_generators()

# import os
# import time
# import random
# import requests
# from openai import OpenAI
# from dotenv import load_dotenv
# from typing import Dict, List

# # Load environment variables once at module level
# load_dotenv()

# class MultiGroqGenerator:
#     def __init__(self):
#         self.providers = self._initialize_groq_providers()
#         self.models = self._get_best_models()
#         self.max_retries = 3
#         self.retry_delay = 2  # seconds
        
#     def _initialize_groq_providers(self):
#         """Initialize multiple Groq API providers with different keys"""
#         providers = []
        
#         # Get all Groq API keys from environment
#         groq_keys = [
#             os.getenv("GROQ_API_KEY_1"),
#             os.getenv("GROQ_API_KEY_2"), 
#         ]
        
#         # Filter out None values and create providers
#         for i, key in enumerate(groq_keys):
#             if key and key.strip():
#                 providers.append({
#                     'name': f'Groq-{i+1}',
#                     'client': OpenAI(
#                         api_key=key.strip(),
#                         base_url="https://api.groq.com/openai/v1"
#                     ),
#                     'weight': 10,
#                     'fail_count': 0,
#                     'last_used': 0
#                 })
        
#         if not providers:
#             raise ValueError("No Groq API keys found. Please set GROQ_API_KEY_1, GROQ_API_KEY_2, etc.")
            
#         print(f"βœ… Initialized {len(providers)} Groq providers")
#         return providers
    
#     def _get_best_models(self):
#         """Select optimal models for educational content"""
#         return [
#             {
#                 'id': 'llama-3.3-70b-versatile',
#                 'name': 'Llama 3.3 70B',
#                 'weight': 10,
#                 'max_tokens': 32768,
#                 'description': 'Best for complex explanations'
#             },
#             {
#                 'id': 'meta-llama/llama-4-maverick-17b-128e-instruct', 
#                 'name': 'Llama 4 Maverick 17B',
#                 'weight': 9,
#                 'max_tokens': 128000,
#                 'description': 'Large context for big documents'
#             },
#             {
#                 'id': 'llama-3.1-8b-instant',
#                 'name': 'Llama 3.1 8B Instant',
#                 'weight': 8,
#                 'max_tokens': 32768,
#                 'description': 'Fast for most content'
#             },
#         ]
    
#     def _select_provider(self):
#         """Select provider based on weight and fail history"""
#         available_providers = [
#             p for p in self.providers 
#             if p['fail_count'] < 3 and (time.time() - p['last_used']) > 30
#         ]
        
#         if not available_providers:
#             available_providers = self.providers
#             for p in available_providers:
#                 p['fail_count'] = max(0, p['fail_count'] - 1)
        
#         weights = [p['weight'] for p in available_providers]
#         selected = random.choices(available_providers, weights=weights, k=1)[0]
#         selected['last_used'] = time.time()
#         return selected
    
#     def _select_model(self, prompt_length: int):
#         """Select optimal model based on prompt size"""
#         approx_tokens = prompt_length // 4
        
#         if approx_tokens > 20000:
#             return self.models[1]  # Maverick for huge docs
#         elif approx_tokens > 10000:
#             return self.models[1]  # Maverick for large docs
#         elif approx_tokens > 6000:
#             return self.models[0]  # 70B for medium-large
#         elif approx_tokens > 3000:
#             return self.models[0]  # 70B for quality
#         else:
#             return self.models[2]  # 8B for speed
    
#     def generate(self, prompt: str) -> str:
#         """Generate content with automatic failover"""
#         last_error = None
#         prompt_length = len(prompt)
        
#         for attempt in range(self.max_retries + 1):
#             provider = self._select_provider()
#             model = self._select_model(prompt_length)
            
#             try:
#                 print(f"πŸ”„ Attempt {attempt + 1} with {provider['name']} using {model['name']}...")
                
#                 result = self._call_groq(provider, model, prompt)
                
#                 if result and not result.startswith(("[Error", "[RateLimit]", "[Quota]", "[Auth]", "[Empty]", "[ModelNotFound]")):
#                     print(f"βœ… Success with {provider['name']} + {model['name']}")
#                     provider['weight'] = min(20, provider['weight'] + 1)
#                     provider['fail_count'] = max(0, provider['fail_count'] - 1)
#                     return result
#                 else:
#                     print(f"❌ Provider returned: {result}")
#                     if "[ModelNotFound]" in result:
#                         continue
                    
#             except Exception as e:
#                 last_error = str(e)
#                 print(f"❌ {provider['name']} + {model['name']} failed: {last_error}")
#                 provider['weight'] = max(1, provider['weight'] - 2)
#                 provider['fail_count'] += 1
                
#                 if attempt < self.max_retries:
#                     delay = self.retry_delay * (2 ** attempt)
#                     print(f"⏰ Waiting {delay}s before retry...")
#                     time.sleep(delay)
        
#         return self._fallback_generate(prompt)
    
#     def generate_large_content(self, prompt: str) -> str:
#         """Handle large content generation for Groq - compatibility method"""
#         print("πŸ”· Using Groq for large content generation...")
        
#         # For Groq, we can handle large content directly due to large context windows
#         # Just use the normal generate method with optimized model selection
#         prompt_length = len(prompt)
        
#         if prompt_length > 20000:  # Very large prompt
#             print("πŸ“ Large prompt detected, optimizing for Groq Maverick...")
#             # Temporarily prioritize Maverick for large contexts
#             original_models = self.models.copy()
#             self.models = [self.models[1]]  # Maverick has 128K context
#             try:
#                 result = self.generate(prompt)
#                 return result
#             finally:
#                 self.models = original_models  # Restore original models
#         else:
#             # Use normal generation
#             return self.generate(prompt)
    
#     def _fallback_generate(self, prompt: str) -> str:
#         """Fallback generation with simpler model selection"""
#         print("πŸ”„ Trying fallback generation...")
        
#         fallback_models = [self.models[2], self.models[0]]
        
#         for model in fallback_models:
#             for provider in self.providers:
#                 try:
#                     print(f"πŸ”„ Fallback with {provider['name']} using {model['name']}...")
#                     result = self._call_groq(provider, model, prompt)
                    
#                     if result and not result.startswith(("[Error", "[RateLimit]", "[Quota]", "[Auth]", "[Empty]", "[ModelNotFound]")):
#                         print(f"βœ… Fallback success with {provider['name']} + {model['name']}")
#                         return result
#                 except Exception as e:
#                     print(f"❌ Fallback failed: {e}")
#                     continue
        
#         return self._get_user_friendly_error("All models failed")
    
#     def _call_groq(self, provider, model, prompt: str) -> str:
#         """Call Groq API with specific provider and model"""
#         try:
#             prompt_tokens_approx = len(prompt) // 4
#             available_tokens = model['max_tokens'] - prompt_tokens_approx - 500
#             max_response_tokens = max(1000, min(8000, available_tokens))
            
#             response = provider['client'].chat.completions.create(
#                 model=model['id'],
#                 messages=[{"role": "user", "content": prompt}],
#                 temperature=0.7,
#                 max_tokens=max_response_tokens,
#                 top_p=0.9
#             )
            
#             if (response and response.choices and len(response.choices) > 0 and 
#                 response.choices[0].message and response.choices[0].message.content):
                
#                 content = response.choices[0].message.content.strip()
#                 return content if content else "[Empty] No content generated"
#             else:
#                 return "[Empty] Invalid response structure"
                
#         except Exception as e:
#             error_msg = str(e).lower()
            
#             if "rate limit" in error_msg or "429" in error_msg:
#                 return f"[RateLimit] {provider['name']} rate limit exceeded"
#             elif "quota" in error_msg:
#                 return f"[Quota] {provider['name']} quota exceeded"
#             elif "authentication" in error_msg:
#                 return f"[Auth] {provider['name']} authentication failed"
#             elif "context length" in error_msg:
#                 return f"[Length] {provider['name']} content too long"
#             elif "model not found" in error_msg:
#                 return f"[ModelNotFound] {provider['name']}: {str(e)}"
#             else:
#                 return f"[Error] {provider['name']}: {str(e)}"
    
#     def _get_user_friendly_error(self, technical_error: str) -> str:
#         """Convert technical errors to user-friendly messages"""
#         error_lower = technical_error.lower()
        
#         if "rate limit" in error_lower:
#             return "🚫 **Service Busy** - Please wait a few minutes and try again"
#         elif "quota" in error_lower:
#             return "πŸ“Š **Daily Limit Reached** - Try again tomorrow"
#         elif "length" in error_lower:
#             return "πŸ“ **Content Too Large** - Please break into smaller sections"
#         else:
#             return "❌ **Temporary Issue** - Please try again shortly"

#     def get_service_status(self) -> dict:
#         """Get current status of all providers"""
#         status = {
#             'total_providers': len(self.providers),
#             'healthy_providers': len([p for p in self.providers if p['fail_count'] < 2]),
#             'providers': [],
#             'models': [m['name'] for m in self.models]
#         }
        
#         for provider in self.providers:
#             if provider['fail_count'] >= 3:
#                 status_text = "πŸ”΄ Limited"
#             elif provider['fail_count'] >= 1:
#                 status_text = "🟑 Slow"
#             else:
#                 status_text = "🟒 Good"
                
#             status['providers'].append({
#                 'name': provider['name'],
#                 'status': status_text,
#                 'failures': provider['fail_count']
#             })
        
#         return status


# class HFGenerator:
#     """Phi-3 Generator with Auto-Pull, Smart Chunking, and Context Preservation"""
    
#     def __init__(self, base_url: str = None):
#         # Use environment variable as default if no base_url provided
#         self.base_url = base_url or os.getenv("MODEL_URL")
#         self.model = "phi3:mini"
#         self.current_requests = 0
#         self.max_concurrent = 2
#         self.model_available = False
#         self._ensure_model_available()
    
#     def _ensure_model_available(self):
#         """Check if model is available and pull if needed"""
#         try:
#             response = requests.get(f"{self.base_url}/api/tags", timeout=10)
#             if response.status_code == 200:
#                 models = response.json().get('models', [])
#                 self.model_available = any(model['name'] == self.model for model in models)
                
#                 if not self.model_available:
#                     print(f"πŸ”„ Model {self.model} not found, pulling...")
#                     self._pull_model()
#                 else:
#                     print(f"βœ… Model {self.model} is available")
#             else:
#                 print(f"❌ Could not check models: {response.status_code}")
#         except Exception as e:
#             print(f"❌ Error checking models: {e}")
    
#     def _pull_model(self):
#         """Pull the Phi-3 model if not available"""
#         try:
#             print(f"πŸ“₯ Pulling {self.model}... This may take a few minutes.")
            
#             payload = {"name": self.model}
#             response = requests.post(
#                 f"{self.base_url}/api/pull", 
#                 json=payload, 
#                 timeout=300  # 5 minute timeout for pull
#             )
            
#             if response.status_code == 200:
#                 print(f"βœ… Successfully pulled {self.model}")
#                 self.model_available = True
#                 return True
#             else:
#                 print(f"❌ Failed to pull model: {response.text}")
#                 return False
                
#         except Exception as e:
#             print(f"❌ Error pulling model: {e}")
#             return False
    
#     def _estimate_tokens(self, text: str) -> int:
#         """Rough token estimation"""
#         return len(text) // 4
    
#     def _chunk_content(self, content: str, max_tokens: int = 2500) -> list:
#         """Split large content into manageable chunks"""
#         paragraphs = content.split('\n\n')
#         chunks = []
#         current_chunk = ""
#         current_tokens = 0
        
#         for paragraph in paragraphs:
#             para_tokens = self._estimate_tokens(paragraph)
            
#             if para_tokens > max_tokens:
#                 sentences = paragraph.split('. ')
#                 for sentence in sentences:
#                     sent_tokens = self._estimate_tokens(sentence)
#                     if current_tokens + sent_tokens > max_tokens:
#                         if current_chunk:
#                             chunks.append(current_chunk.strip())
#                         current_chunk = sentence
#                         current_tokens = sent_tokens
#                     else:
#                         current_chunk += " " + sentence
#                         current_tokens += sent_tokens
#             else:
#                 if current_tokens + para_tokens > max_tokens:
#                     if current_chunk:
#                         chunks.append(current_chunk.strip())
#                     current_chunk = paragraph
#                     current_tokens = para_tokens
#                 else:
#                     current_chunk += "\n\n" + paragraph
#                     current_tokens += para_tokens
        
#         if current_chunk:
#             chunks.append(current_chunk.strip())
            
#         return chunks
    
#     def _create_context_summary(self, previous_chunks: list) -> str:
#         """Create a context summary from previous chunks"""
#         if not previous_chunks:
#             return ""
        
#         context_prompt = f"""
#         Here's a summary of previous sections:
#         {chr(10).join(previous_chunks)}
        
#         Provide a brief summary (2-3 sentences) of key points to help understand the next section.
#         """
        
#         try:
#             payload = {
#                 "model": self.model,
#                 "messages": [{"role": "user", "content": context_prompt}],
#                 "stream": False,
#                 "options": {
#                     "temperature": 0.3,
#                     "top_p": 0.8,
#                     "num_predict": 200
#                 }
#             }
            
#             response = requests.post(f"{self.base_url}/api/chat", json=payload, timeout=30)
#             if response.status_code == 200:
#                 return response.json()['message']['content'].strip()
#             return f"Previous sections covered: {', '.join(previous_chunks[:2])}..."
#         except Exception:
#             return f"Context from {len(previous_chunks)} previous sections"
    
#     def _create_chunk_summary(self, content: str) -> str:
#         """Create a very brief summary of a chunk's content"""
#         try:
#             payload = {
#                 "model": self.model,
#                 "messages": [{"role": "user", "content": f"Summarize key points in 1-2 sentences: {content}"}],
#                 "stream": False,
#                 "options": {
#                     "temperature": 0.3,
#                     "top_p": 0.8,
#                     "num_predict": 100
#                 }
#             }
            
#             response = requests.post(f"{self.base_url}/api/chat", json=payload, timeout=20)
#             if response.status_code == 200:
#                 return response.json()['message']['content'].strip()
#             return content[:100] + "..."
#         except:
#             return content[:100] + "..."
    
#     def _call_ollama_with_retry(self, payload: dict, max_retries: int = 2) -> Dict:
#         """Call Ollama API with auto-pull retry"""
#         for attempt in range(max_retries + 1):
#             try:
#                 response = requests.post(
#                     f"{self.base_url}/api/chat",
#                     json=payload,
#                     timeout=60
#                 )
                
#                 if response.status_code == 200:
#                     return {"success": True, "data": response.json()}
#                 elif response.status_code == 404 and "not found" in response.text.lower():
#                     print(f"πŸ”„ Model not found, attempting to pull... (attempt {attempt + 1})")
#                     if self._pull_model():
#                         continue  # Retry after successful pull
#                     else:
#                         return {"success": False, "error": "Failed to pull model"}
#                 else:
#                     return {"success": False, "error": f"API error {response.status_code}: {response.text}"}
                    
#             except requests.exceptions.Timeout:
#                 if attempt < max_retries:
#                     print(f"⏰ Timeout, retrying... (attempt {attempt + 1})")
#                     time.sleep(2)
#                 else:
#                     return {"success": False, "error": "Request timeout"}
#             except Exception as e:
#                 return {"success": False, "error": f"Connection failed: {str(e)}"}
        
#         return {"success": False, "error": "All retries failed"}
    
#     def generate(self, prompt: str, user_type: str = "student", 
#                  academic_level: str = "undergraduate", 
#                  content_type: str = "simplified_explanation") -> str:
#         """Generate educational content with auto-pull and smart features - FIXED to return string"""
        
#         # Check if we need to pull model first
#         if not self.model_available:
#             print("πŸ”„ Model not available, pulling before generation...")
#             if not self._pull_model():
#                 return f"❌ Phi-3 Error: Phi-3 model is not available and failed to pull. Please check the Ollama server."
        
#         estimated_tokens = self._estimate_tokens(prompt)
        
#         # Auto-detect large documents and use chunking
#         if estimated_tokens > 3000:
#             result = self.generate_large_content_with_context(prompt, user_type, academic_level, content_type)
#             if isinstance(result, dict):
#                 return result.get("content", f"❌ Phi-3 Error: {result.get('error', 'Unknown error')}")
#             return result
        
#         # Queue management
#         if self.current_requests >= self.max_concurrent:
#             queue_position = self.current_requests - self.max_concurrent + 1
#             estimated_wait = queue_position * 7
#             return f"❌ Phi-3 Error: Service busy. You're #{queue_position} in queue (~{estimated_wait}s)"
        
#         self.current_requests += 1
#         try:
#             # Use the prompt directly without adding instructional wrapper
#             # The prompts from tutor_flow and student_flow now tell it to generate content directly
            
#             # FIXED: Increased token allocation for complete responses
#             if estimated_tokens > 2000:
#                 max_output_tokens = 2000  # Increased from 500
#             elif estimated_tokens > 1000:
#                 max_output_tokens = 2500  # Increased from 800
#             else:
#                 max_output_tokens = 3000  # Increased from 1000
            
#             payload = {
#                 "model": self.model,
#                 "messages": [{"role": "user", "content": prompt}],
#                 "stream": False,
#                 "options": {
#                     "temperature": 0.7,
#                     "top_p": 0.9,
#                     "num_predict": max_output_tokens
#                 }
#             }
            
#             start_time = time.time()
#             result = self._call_ollama_with_retry(payload)
#             inference_time = time.time() - start_time
            
#             if result["success"]:
#                 data = result["data"]
#                 content = data['message']['content'].strip()
                
#                 # Check if content was cut off and retry with more tokens if needed
#                 if self._is_content_cut_off(content):
#                     print("⚠️ Content appears cut off, retrying with more tokens...")
#                     payload["options"]["num_predict"] = 4000  # Max tokens for Phi-3
#                     retry_result = self._call_ollama_with_retry(payload)
                    
#                     if retry_result["success"]:
#                         data = retry_result["data"]
#                         content = data['message']['content'].strip()
                
#                 return content
#             else:
#                 return f"❌ Phi-3 Error: {result['error']}"
                
#         except Exception as e:
#             return f"❌ Phi-3 Error: {str(e)}"
#         finally:
#             self.current_requests -= 1

#     def _is_content_cut_off(self, content: str) -> bool:
#         """Check if content appears to be cut off mid-sentence"""
#         if not content or len(content.strip()) < 100:
#             return True
        
#         # Check if it ends with proper punctuation
#         if content.strip().endswith(('.', '!', '?', '."', '!"', '?"')):
#             return False
        
#         # Check if it ends with incomplete sentence markers
#         if any(content.strip().endswith(marker) for marker in [',', ';', ':', '-', '–', 'β€”']):
#             return True
        
#         # Check if it ends with an incomplete word or thought
#         last_paragraph = content.strip().split('\n')[-1]
#         if len(last_paragraph.split()) < 5:  # Very short last paragraph
#             return True
        
#         return False
    
#     def generate_large_content_with_context(self, prompt: str, user_type: str = "student", 
#                                           academic_level: str = "undergraduate", 
#                                           content_type: str = "simplified_explanation") -> str:
#         """Handle large documents with context preservation - FIXED to return string"""
        
#         estimated_tokens = self._estimate_tokens(prompt)
        
#         if estimated_tokens <= 3000:
#             return self.generate(prompt, user_type, academic_level, content_type)
        
#         chunks = self._chunk_content(prompt, max_tokens=2500)
        
#         if len(chunks) > 6:
#             return f"❌ Phi-3 Error: Document too large ({estimated_tokens} tokens, {len(chunks)} chunks). Please use Groq or break into smaller sections."
        
#         all_results = []
#         previous_summaries = []
        
#         for i, chunk in enumerate(chunks):
#             print(f"πŸ”„ Processing chunk {i+1}/{len(chunks)} with context...")
            
#             context_summary = self._create_context_summary(previous_summaries)
            
#             if context_summary:
#                 chunk_prompt = f"""Part {i+1} of {len(chunks)} - Building on previous context:

# **PREVIOUS CONTEXT:**
# {context_summary}

# **CURRENT SECTION:**
# {chunk}

# Analyze this section while connecting to the overall context."""
#             else:
#                 chunk_prompt = f"""Part {i+1} of {len(chunks)}:

# **CONTENT:**
# {chunk}

# Please analyze this section."""
            
#             chunk_result = self.generate(chunk_prompt, user_type, academic_level, content_type)
            
#             if "❌ Phi-3 Error:" not in chunk_result:
#                 chunk_summary = self._create_chunk_summary(chunk_result)
#                 previous_summaries.append(chunk_summary)
                
#                 all_results.append({
#                     "chunk_number": i+1,
#                     "content": chunk_result,
#                     "context_used": bool(context_summary)
#                 })
#             else:
#                 return f"❌ Phi-3 Error: Failed to process chunk {i+1}: {chunk_result}"
            
#             if i < len(chunks) - 1:
#                 time.sleep(1)
        
#         # Combine results
#         combined_content = "\n\n".join([f"## Part {r['chunk_number']}\n{r['content']}" for r in all_results])
        
#         return combined_content
    
#     def health_check(self) -> Dict:
#         """Comprehensive health check"""
#         try:
#             response = requests.get(f"{self.base_url}/api/tags", timeout=10)
#             if response.status_code == 200:
#                 models = response.json().get('models', [])
#                 model_available = any(model['name'] == self.model for model in models)
                
#                 return {
#                     "server_healthy": True,
#                     "model_available": model_available,
#                     "available_models": [model['name'] for model in models],
#                     "model_required": self.model
#                 }
#             else:
#                 return {
#                     "server_healthy": False,
#                     "model_available": False,
#                     "error": f"Server returned {response.status_code}"
#                 }
#         except Exception as e:
#             return {
#                 "server_healthy": False,
#                 "model_available": False,
#                 "error": str(e)
#             }
    
#     def get_available_models(self):
#         """Get list of available models"""
#         try:
#             response = requests.get(f"{self.base_url}/api/tags", timeout=10)
#             if response.status_code == 200:
#                 return [model['name'] for model in response.json().get('models', [])]
#             return []
#         except:
#             return []
    
#     def get_queue_status(self):
#         """Get current queue status"""
#         return {
#             "current_requests": self.current_requests,
#             "max_concurrent": self.max_concurrent,
#             "available_slots": max(0, self.max_concurrent - self.current_requests)
#         }


# # Backward compatibility
# class GroqGenerator(MultiGroqGenerator):
#     def __init__(self, model="llama-3.3-70b-versatile"):
#         super().__init__()


# class ModelManager:
#     """Unified model manager that handles both Groq and Phi-3 models"""
    
#     def __init__(self):
#         self.groq_generator = MultiGroqGenerator()
#         self.phi3_generator = HFGenerator()
    
#     def generate(self, prompt: str, model_choice: str = "phi3", **kwargs) -> str:
#         """Generate content using selected model"""
#         print(f"🎯 Using model: {model_choice}")
        
#         if model_choice == "phi3":
#             # Handle Phi-3 generation - FIXED: Now returns string directly
#             user_type = kwargs.get('user_type', 'student')
#             academic_level = kwargs.get('student_level', 'undergraduate')
#             content_type = kwargs.get('content_type', 'simplified_explanation')
            
#             result = self.phi3_generator.generate(prompt, user_type, academic_level, content_type)
#             return result
#         else:
#             # Use Groq for comparison - check if this is a large content request
#             is_large_content = len(prompt) > 8000  # You can adjust this threshold
            
#             if is_large_content:
#                 return self.groq_generator.generate_large_content(prompt)
#             else:
#                 return self.groq_generator.generate(prompt)
    
#     def get_service_status(self) -> dict:
#         """Get clean research-focused status"""
#         groq_status = self.groq_generator.get_service_status()
#         phi3_health = self.phi3_generator.health_check()
        
#         # Clean Groq status - remove model names, focus on providers
#         clean_groq_status = {
#             'healthy_providers': groq_status['healthy_providers'],
#             'total_providers': groq_status['total_providers'],
#             'providers': [
#                 {
#                     'name': provider['name'],
#                     'failures': provider['failures']
#                 }
#                 for provider in groq_status['providers']
#             ]
#         }
        
#         # Enhanced Phi-3 status
#         enhanced_phi3_status = {
#             'server_healthy': phi3_health['server_healthy'],
#             'model_available': phi3_health['model_available'],
#             'available_models': phi3_health['available_models'],
#             'model_required': phi3_health['model_required']
#         }
        
#         return {
#             "groq": clean_groq_status,
#             "phi3": enhanced_phi3_status
#         }


# # Global model manager instance
# model_manager = ModelManager()


# # Setup function for your Streamlit app
# def setup_generators():
#     """Setup both generators with health checks"""
#     print("πŸ”§ Setting up generators...")
    
#     groq_generator = MultiGroqGenerator()
    
#     phi3_generator = HFGenerator()
#     phi3_health = phi3_generator.health_check()
    
#     print(f"πŸ₯ Phi-3 Health: {phi3_health}")
    
#     if not phi3_health["server_healthy"]:
#         print("❌ Phi-3 server is not accessible")
#     elif not phi3_health["model_available"]:
#         print("πŸ”„ Phi-3 model needs to be pulled on first use")
    
#     return {
#         "groq": groq_generator,
#         "phi3": phi3_generator
#     }


# # Test function
# def test_generators():
#     """Test both generators"""
#     print("πŸ§ͺ Testing Generators...")
    
#     generators = setup_generators()
    
#     # Test Groq
#     print("\nπŸ”· Testing Groq...")
#     groq_result = generators["groq"].generate("Explain photosynthesis briefly")
#     if not groq_result.startswith("["):
#         print("βœ… Groq working")
#     else:
#         print("❌ Groq failed:", groq_result)
    
#     # Test Phi-3
#     print("\nπŸ”Ά Testing Phi-3...")
#     phi3_result = generators["phi3"].generate("Explain photosynthesis briefly")
#     if "❌ Phi-3 Error:" not in phi3_result:
#         print("βœ… Phi-3 working")
#     else:
#         print("❌ Phi-3 failed:", phi3_result)
    
#     # Test health
#     print("\nπŸ₯ Health Check:")
#     print(f"Groq providers: {len(generators['groq'].providers)}")
#     print(f"Phi-3 healthy: {generators['phi3'].health_check()}")


# if __name__ == "__main__":
#     test_generators()