Spaces:
Running
Running
Upload 4 files
Browse files- components/output_renderer.py +37 -0
- components/student_flow.py +439 -0
- components/tutor_flow.py +804 -0
- components/ui_components.py +313 -0
components/output_renderer.py
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import re
|
| 3 |
+
|
| 4 |
+
def render_output_section():
|
| 5 |
+
"""Render the generated output section - FIXED for regenerated content"""
|
| 6 |
+
if st.session_state.generated_output:
|
| 7 |
+
# ALWAYS render the current content, regardless of regeneration status
|
| 8 |
+
render_output(st.session_state.generated_output)
|
| 9 |
+
|
| 10 |
+
def render_output(output):
|
| 11 |
+
"""Render output with LaTeX support"""
|
| 12 |
+
st.markdown("---")
|
| 13 |
+
st.markdown("### π Generated Content")
|
| 14 |
+
|
| 15 |
+
# Extract and render LaTeX
|
| 16 |
+
output = render_latex_expressions(output)
|
| 17 |
+
|
| 18 |
+
# Render remaining text
|
| 19 |
+
st.markdown(output.strip(), unsafe_allow_html=True)
|
| 20 |
+
|
| 21 |
+
def render_latex_expressions(output):
|
| 22 |
+
"""Extract and render LaTeX expressions from output"""
|
| 23 |
+
latex_patterns = re.findall(r"\$\$(.+?)\$\$|\\\[(.+?)\\\]|\\\((.+?)\\\)", output, re.DOTALL)
|
| 24 |
+
|
| 25 |
+
for groups in latex_patterns:
|
| 26 |
+
latex_expr = next(filter(None, groups))
|
| 27 |
+
try:
|
| 28 |
+
st.latex(latex_expr.strip())
|
| 29 |
+
except:
|
| 30 |
+
st.markdown(f"`{latex_expr}`")
|
| 31 |
+
|
| 32 |
+
# Clean LaTeX from output for text display
|
| 33 |
+
for g in groups:
|
| 34 |
+
if g:
|
| 35 |
+
output = output.replace(f"$${g}$$", "").replace(f"\\[{g}\\]", "").replace(f"\\({g}\\)", "")
|
| 36 |
+
|
| 37 |
+
return output
|
components/student_flow.py
ADDED
|
@@ -0,0 +1,439 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import re
|
| 3 |
+
from generator import model_manager
|
| 4 |
+
from components.file_processor import get_student_content_input
|
| 5 |
+
from components.export_handler import generate_pdf
|
| 6 |
+
from components.session_manager import update_session_state
|
| 7 |
+
|
| 8 |
+
def render_student_flow():
|
| 9 |
+
"""Render the student content generation flow"""
|
| 10 |
+
st.header("π Student Learning Assistant")
|
| 11 |
+
render_student_info()
|
| 12 |
+
|
| 13 |
+
# Check if we need to regenerate with a different model
|
| 14 |
+
if st.session_state.get("regenerate_with_new_model") and st.session_state.get("original_content_text"):
|
| 15 |
+
handle_student_regeneration()
|
| 16 |
+
return
|
| 17 |
+
|
| 18 |
+
content_text, filename = get_student_content_input()
|
| 19 |
+
student_level = get_student_level()
|
| 20 |
+
specific_help = get_student_context()
|
| 21 |
+
|
| 22 |
+
if content_text and st.button("π Simplify This Content", type="primary", key="generate_student_content"):
|
| 23 |
+
generate_student_content(content_text, student_level, specific_help, filename)
|
| 24 |
+
|
| 25 |
+
def handle_student_regeneration():
|
| 26 |
+
"""Handle student content regeneration with new model"""
|
| 27 |
+
st.header("π Student Learning Assistant")
|
| 28 |
+
render_student_info()
|
| 29 |
+
|
| 30 |
+
# Show we're regenerating
|
| 31 |
+
st.info("π Regenerating your content with the new model...")
|
| 32 |
+
|
| 33 |
+
# Get preserved inputs
|
| 34 |
+
content_text = st.session_state.original_content_text
|
| 35 |
+
student_level = st.session_state.student_level
|
| 36 |
+
specific_help = st.session_state.get("original_specific_help", "")
|
| 37 |
+
filename = st.session_state.get("original_filename", "regenerated_content.pdf")
|
| 38 |
+
|
| 39 |
+
# Show original inputs for context
|
| 40 |
+
with st.expander("π Original Inputs (Read-only)", expanded=True):
|
| 41 |
+
st.write(f"**Student Level:** {student_level}")
|
| 42 |
+
st.write(f"**Content Length:** {len(content_text)} characters")
|
| 43 |
+
if specific_help:
|
| 44 |
+
st.write(f"**Specific Help Requested:** {specific_help}")
|
| 45 |
+
|
| 46 |
+
# Regenerate the content
|
| 47 |
+
generate_student_content(content_text, student_level, specific_help, filename)
|
| 48 |
+
|
| 49 |
+
def render_student_info():
|
| 50 |
+
"""Render student flow information"""
|
| 51 |
+
st.info("""
|
| 52 |
+
**How this works:**
|
| 53 |
+
Upload your course material or paste difficult content, and I'll generate a simplified,
|
| 54 |
+
easy-to-understand version tailored to your level.
|
| 55 |
+
""")
|
| 56 |
+
|
| 57 |
+
def get_student_level():
|
| 58 |
+
"""Get student's academic level"""
|
| 59 |
+
st.subheader("π― Your Learning Level")
|
| 60 |
+
return st.selectbox(
|
| 61 |
+
"What's your current academic level?",
|
| 62 |
+
["High School", "Undergraduate (1st-2nd year)", "Undergraduate (3rd-4th year)", "Masters", "PhD"],
|
| 63 |
+
help="This helps me tailor the explanation to your level",
|
| 64 |
+
key="student_level_select"
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
def get_student_context():
|
| 68 |
+
"""Get additional context from student"""
|
| 69 |
+
st.subheader("π‘ Additional Context (Optional)")
|
| 70 |
+
return st.text_area(
|
| 71 |
+
"What specifically are you struggling with?",
|
| 72 |
+
placeholder="e.g., 'I don't understand backpropagation' or 'The math notation is confusing'",
|
| 73 |
+
help="Tell me what's confusing you for better help",
|
| 74 |
+
key="student_context_input"
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
def generate_student_content(content_text, student_level, specific_help, filename):
|
| 78 |
+
"""Generate content for student with optimized content handling"""
|
| 79 |
+
# STORE ORIGINAL CONTENT FOR REGENERATION
|
| 80 |
+
st.session_state.original_content_text = content_text
|
| 81 |
+
st.session_state.original_specific_help = specific_help
|
| 82 |
+
st.session_state.original_filename = filename
|
| 83 |
+
|
| 84 |
+
if len(content_text) > 15000:
|
| 85 |
+
st.info("π Your content is quite comprehensive. I'll process it in sections for optimal quality...")
|
| 86 |
+
generate_chunked_content(content_text, student_level, specific_help, filename)
|
| 87 |
+
elif len(content_text) > 8000:
|
| 88 |
+
st.info("π Processing your content with optimized models...")
|
| 89 |
+
generate_single_large_content(content_text, student_level, specific_help, filename)
|
| 90 |
+
else:
|
| 91 |
+
generate_single_content(content_text, student_level, specific_help, filename)
|
| 92 |
+
|
| 93 |
+
def generate_single_content(content_text, student_level, specific_help, filename):
|
| 94 |
+
"""Generate content for normal-sized inputs"""
|
| 95 |
+
with st.spinner("βοΈ Creating student-friendly explanation..."):
|
| 96 |
+
selected_model = st.session_state.get("selected_model", "groq")
|
| 97 |
+
|
| 98 |
+
# Use Phi-3 specific prompts if Phi-3 is selected
|
| 99 |
+
if selected_model == "phi3":
|
| 100 |
+
prompt = build_phi3_student_prompt(content_text, student_level, specific_help)
|
| 101 |
+
else:
|
| 102 |
+
prompt = build_groq_student_prompt(content_text, student_level, specific_help)
|
| 103 |
+
|
| 104 |
+
try:
|
| 105 |
+
output = model_manager.generate(
|
| 106 |
+
prompt,
|
| 107 |
+
selected_model,
|
| 108 |
+
user_type="student",
|
| 109 |
+
student_level=student_level,
|
| 110 |
+
content_type="simplified_explanation"
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
if output is None:
|
| 114 |
+
st.error("β AI service returned no response")
|
| 115 |
+
return
|
| 116 |
+
|
| 117 |
+
# Clean the output for Phi-3 specifically
|
| 118 |
+
if selected_model == "phi3":
|
| 119 |
+
output = clean_phi3_output(output)
|
| 120 |
+
|
| 121 |
+
if any(msg in output for msg in ["π«", "π", "β", "[Error", "[RateLimit]", "[Quota]", "[Auth]", "[Empty]", "β Phi-3 Error:"]):
|
| 122 |
+
st.error(output)
|
| 123 |
+
return
|
| 124 |
+
|
| 125 |
+
# Generate PDF first
|
| 126 |
+
pdf_data = generate_pdf(output, "student", level=student_level)
|
| 127 |
+
|
| 128 |
+
# Update session state
|
| 129 |
+
update_session_state(
|
| 130 |
+
original_prompt=prompt,
|
| 131 |
+
generated_output=output,
|
| 132 |
+
feedback_given=False,
|
| 133 |
+
regenerated=False,
|
| 134 |
+
content_source="student",
|
| 135 |
+
student_level=student_level,
|
| 136 |
+
original_filename=filename,
|
| 137 |
+
pdf_export_data=pdf_data,
|
| 138 |
+
saved_to_history=False,
|
| 139 |
+
current_history_id=None,
|
| 140 |
+
generated_model=selected_model
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
st.rerun()
|
| 144 |
+
|
| 145 |
+
except Exception as e:
|
| 146 |
+
st.error(f"β Generation failed: {str(e)}")
|
| 147 |
+
|
| 148 |
+
def generate_single_large_content(content_text, student_level, specific_help, filename):
|
| 149 |
+
"""Generate content for large but manageable inputs using high-capacity models"""
|
| 150 |
+
with st.spinner("βοΈ Creating comprehensive explanation..."):
|
| 151 |
+
selected_model = st.session_state.get("selected_model", "groq")
|
| 152 |
+
|
| 153 |
+
# Use Phi-3 specific prompts if Phi-3 is selected
|
| 154 |
+
if selected_model == "phi3":
|
| 155 |
+
prompt = build_phi3_student_prompt(content_text, student_level, specific_help)
|
| 156 |
+
else:
|
| 157 |
+
prompt = build_groq_student_prompt(content_text, student_level, specific_help)
|
| 158 |
+
|
| 159 |
+
try:
|
| 160 |
+
if selected_model == "phi3":
|
| 161 |
+
output = model_manager.generate(
|
| 162 |
+
prompt,
|
| 163 |
+
selected_model,
|
| 164 |
+
user_type="student",
|
| 165 |
+
student_level=student_level,
|
| 166 |
+
content_type="simplified_explanation"
|
| 167 |
+
)
|
| 168 |
+
output = clean_phi3_output(output)
|
| 169 |
+
else:
|
| 170 |
+
output = model_manager.groq_generator.generate_large_content(prompt)
|
| 171 |
+
|
| 172 |
+
if any(msg in output for msg in ["π«", "π", "β", "[Error", "[RateLimit]", "[Quota]", "[Auth]", "[Empty]", "β Phi-3 Error:"]):
|
| 173 |
+
st.error(output)
|
| 174 |
+
return
|
| 175 |
+
|
| 176 |
+
# Generate PDF and update session state
|
| 177 |
+
pdf_data = generate_pdf(output, "student", level=student_level)
|
| 178 |
+
|
| 179 |
+
update_session_state(
|
| 180 |
+
original_prompt=prompt,
|
| 181 |
+
generated_output=output,
|
| 182 |
+
feedback_given=False,
|
| 183 |
+
regenerated=False,
|
| 184 |
+
content_source="student",
|
| 185 |
+
student_level=student_level,
|
| 186 |
+
original_filename=filename,
|
| 187 |
+
pdf_export_data=pdf_data,
|
| 188 |
+
saved_to_history=False,
|
| 189 |
+
current_history_id=None,
|
| 190 |
+
generated_model=selected_model
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
st.rerun()
|
| 194 |
+
|
| 195 |
+
except Exception as e:
|
| 196 |
+
st.error(f"β Generation failed: {str(e)}")
|
| 197 |
+
|
| 198 |
+
def generate_chunked_content(content_text, student_level, specific_help, filename):
|
| 199 |
+
"""Generate content for very large inputs by chunking"""
|
| 200 |
+
chunks = chunk_content(content_text, max_chunk_size=8000)
|
| 201 |
+
|
| 202 |
+
if not chunks:
|
| 203 |
+
st.error("β Unable to process this content. Please try with shorter text.")
|
| 204 |
+
return
|
| 205 |
+
|
| 206 |
+
all_outputs = []
|
| 207 |
+
progress_bar = st.progress(0)
|
| 208 |
+
status_text = st.empty()
|
| 209 |
+
|
| 210 |
+
selected_model = st.session_state.get("selected_model", "groq")
|
| 211 |
+
|
| 212 |
+
for i, chunk in enumerate(chunks):
|
| 213 |
+
status_text.text(f"π Processing section {i+1}/{len(chunks)}...")
|
| 214 |
+
progress_bar.progress((i) / len(chunks))
|
| 215 |
+
|
| 216 |
+
# Use Phi-3 specific prompts if Phi-3 is selected
|
| 217 |
+
if selected_model == "phi3":
|
| 218 |
+
prompt = build_phi3_chunk_prompt(chunk, student_level, specific_help, i+1, len(chunks))
|
| 219 |
+
else:
|
| 220 |
+
prompt = build_groq_chunk_prompt(chunk, student_level, specific_help, i+1, len(chunks))
|
| 221 |
+
|
| 222 |
+
try:
|
| 223 |
+
output = model_manager.generate(
|
| 224 |
+
prompt,
|
| 225 |
+
selected_model,
|
| 226 |
+
user_type="student",
|
| 227 |
+
student_level=student_level,
|
| 228 |
+
content_type="simplified_explanation"
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
if selected_model == "phi3":
|
| 232 |
+
output = clean_phi3_output(output)
|
| 233 |
+
|
| 234 |
+
if any(msg in output for msg in ["π«", "π", "β", "[Error", "[RateLimit]", "[Quota]", "[Auth]", "[Empty]", "β Phi-3 Error:"]):
|
| 235 |
+
st.error(f"β Failed to process section {i+1}: {output}")
|
| 236 |
+
return
|
| 237 |
+
|
| 238 |
+
all_outputs.append(output)
|
| 239 |
+
|
| 240 |
+
except Exception as e:
|
| 241 |
+
st.error(f"β Failed to process section {i+1}: {str(e)}")
|
| 242 |
+
return
|
| 243 |
+
|
| 244 |
+
# Update progress to complete
|
| 245 |
+
progress_bar.progress(1.0)
|
| 246 |
+
status_text.text("β
All sections processed! Combining results...")
|
| 247 |
+
|
| 248 |
+
# Combine all outputs
|
| 249 |
+
final_output = combine_chunk_outputs(all_outputs, student_level)
|
| 250 |
+
|
| 251 |
+
# Generate PDF and update session state
|
| 252 |
+
pdf_data = generate_pdf(final_output, "student", level=student_level)
|
| 253 |
+
|
| 254 |
+
update_session_state(
|
| 255 |
+
original_prompt=f"Simplified content for {student_level} level",
|
| 256 |
+
generated_output=final_output,
|
| 257 |
+
feedback_given=False,
|
| 258 |
+
regenerated=False,
|
| 259 |
+
content_source="student",
|
| 260 |
+
student_level=student_level,
|
| 261 |
+
original_filename=filename,
|
| 262 |
+
pdf_export_data=pdf_data,
|
| 263 |
+
saved_to_history=False,
|
| 264 |
+
current_history_id=None,
|
| 265 |
+
generated_model=selected_model
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
status_text.text("β
Content generation complete!")
|
| 269 |
+
st.rerun()
|
| 270 |
+
|
| 271 |
+
def chunk_content(content, max_chunk_size=8000):
|
| 272 |
+
"""Split content into manageable chunks based on new limits"""
|
| 273 |
+
paragraphs = re.split(r'\n\s*\n', content)
|
| 274 |
+
chunks = []
|
| 275 |
+
current_chunk = ""
|
| 276 |
+
|
| 277 |
+
for paragraph in paragraphs:
|
| 278 |
+
if len(current_chunk) + len(paragraph) < max_chunk_size:
|
| 279 |
+
current_chunk += paragraph + "\n\n"
|
| 280 |
+
else:
|
| 281 |
+
if current_chunk:
|
| 282 |
+
chunks.append(current_chunk.strip())
|
| 283 |
+
current_chunk = paragraph + "\n\n"
|
| 284 |
+
|
| 285 |
+
if current_chunk:
|
| 286 |
+
chunks.append(current_chunk.strip())
|
| 287 |
+
|
| 288 |
+
return chunks
|
| 289 |
+
|
| 290 |
+
def build_phi3_chunk_prompt(chunk, student_level, specific_help, chunk_num, total_chunks):
|
| 291 |
+
"""Build Phi-3 specific prompt for a single chunk - STRICTER VERSION"""
|
| 292 |
+
prompt = f"""TASK: Write the actual simplified explanation for this content section.
|
| 293 |
+
|
| 294 |
+
CONTENT SECTION {chunk_num}/{total_chunks}:
|
| 295 |
+
{chunk}
|
| 296 |
+
|
| 297 |
+
STUDENT: {student_level}
|
| 298 |
+
"""
|
| 299 |
+
if specific_help:
|
| 300 |
+
prompt += f"\nSTUDENT'S REQUEST: {specific_help}"
|
| 301 |
+
|
| 302 |
+
prompt += f"""
|
| 303 |
+
|
| 304 |
+
DIRECTIVES:
|
| 305 |
+
- WRITE THE ACTUAL EXPLANATION ONLY
|
| 306 |
+
- Use simple, clear language for {student_level}
|
| 307 |
+
- Break complex ideas into basic concepts
|
| 308 |
+
- Use everyday examples and analogies
|
| 309 |
+
- Define technical terms in simple words
|
| 310 |
+
- Structure with clear headings
|
| 311 |
+
|
| 312 |
+
STRICT PROHIBITIONS:
|
| 313 |
+
- NO instructional language (no "I will explain", "This section describes")
|
| 314 |
+
- NO meta-commentary about the explanation
|
| 315 |
+
- NO learning objectives or activities
|
| 316 |
+
- NO phrases like "students will understand"
|
| 317 |
+
- NO references to yourself as AI/assistant
|
| 318 |
+
|
| 319 |
+
BEGIN EXPLANATION NOW:
|
| 320 |
+
|
| 321 |
+
"""
|
| 322 |
+
return prompt
|
| 323 |
+
|
| 324 |
+
def build_groq_chunk_prompt(chunk, student_level, specific_help, chunk_num, total_chunks):
|
| 325 |
+
"""Build Groq prompt for a single chunk"""
|
| 326 |
+
prompt = f"""Simplify this content for {student_level} students:
|
| 327 |
+
|
| 328 |
+
CONTENT SECTION {chunk_num}/{total_chunks}:
|
| 329 |
+
{chunk}
|
| 330 |
+
|
| 331 |
+
STUDENT LEVEL: {student_level}
|
| 332 |
+
"""
|
| 333 |
+
if specific_help:
|
| 334 |
+
prompt += f"\nSPECIFIC CONFUSION: {specific_help}"
|
| 335 |
+
|
| 336 |
+
prompt += f"""
|
| 337 |
+
|
| 338 |
+
Create a clear, simplified explanation of this content.
|
| 339 |
+
"""
|
| 340 |
+
return prompt
|
| 341 |
+
|
| 342 |
+
def combine_chunk_outputs(outputs, student_level):
|
| 343 |
+
"""Combine chunk outputs into a cohesive document"""
|
| 344 |
+
combined = f"# Simplified Content for {student_level} Level\n\n"
|
| 345 |
+
|
| 346 |
+
for i, output in enumerate(outputs):
|
| 347 |
+
# Clean up any remaining instructional language
|
| 348 |
+
clean_output = clean_phi3_output(output)
|
| 349 |
+
combined += f"## Part {i+1}\n\n{clean_output.strip()}\n\n---\n\n"
|
| 350 |
+
|
| 351 |
+
return combined
|
| 352 |
+
|
| 353 |
+
def build_phi3_student_prompt(content_text, student_level, specific_help):
|
| 354 |
+
"""Build Phi-3 specific prompt for student content generation - STRICTER VERSION"""
|
| 355 |
+
prompt = f"""TASK: Write the actual simplified explanation for this content.
|
| 356 |
+
|
| 357 |
+
ORIGINAL CONTENT:
|
| 358 |
+
{content_text}
|
| 359 |
+
|
| 360 |
+
STUDENT: {student_level}
|
| 361 |
+
"""
|
| 362 |
+
if specific_help:
|
| 363 |
+
prompt += f"\nSTUDENT'S SPECIFIC REQUEST: {specific_help}"
|
| 364 |
+
|
| 365 |
+
prompt += f"""
|
| 366 |
+
|
| 367 |
+
DIRECTIVES:
|
| 368 |
+
- WRITE THE ACTUAL EXPLANATION ONLY
|
| 369 |
+
- Use simple, clear language appropriate for {student_level}
|
| 370 |
+
- Break down complex concepts into basic building blocks
|
| 371 |
+
- Use everyday analogies and concrete examples
|
| 372 |
+
- Define all technical terms when first used
|
| 373 |
+
- Structure logically with clear headings
|
| 374 |
+
- Make it engaging and conversational
|
| 375 |
+
|
| 376 |
+
STRICT PROHIBITIONS:
|
| 377 |
+
- NO instructional language (no "I will explain", "Let me break this down")
|
| 378 |
+
- NO meta-commentary about the explanation process
|
| 379 |
+
- NO learning objectives, activities, or assessments
|
| 380 |
+
- NO phrases like "students will learn" or "this explains"
|
| 381 |
+
- NO lesson plans or educational frameworks
|
| 382 |
+
- NO references to yourself as AI, assistant, or teacher
|
| 383 |
+
|
| 384 |
+
BEGIN SIMPLIFIED EXPLANATION NOW:
|
| 385 |
+
|
| 386 |
+
"""
|
| 387 |
+
return prompt
|
| 388 |
+
|
| 389 |
+
def build_groq_student_prompt(content_text, student_level, specific_help):
|
| 390 |
+
"""Build Groq prompt for student content generation"""
|
| 391 |
+
prompt = f"""Create a simplified explanation of this content for {student_level} students:
|
| 392 |
+
|
| 393 |
+
CONTENT TO SIMPLIFY:
|
| 394 |
+
{content_text}
|
| 395 |
+
|
| 396 |
+
STUDENT LEVEL: {student_level}
|
| 397 |
+
"""
|
| 398 |
+
if specific_help:
|
| 399 |
+
prompt += f"\nSPECIFIC CONFUSION: {specific_help}"
|
| 400 |
+
|
| 401 |
+
prompt += f"""
|
| 402 |
+
|
| 403 |
+
Provide a clear, easy-to-understand explanation that:
|
| 404 |
+
- Breaks down complex concepts into simple terms
|
| 405 |
+
- Uses analogies and examples appropriate for {student_level}
|
| 406 |
+
- Defines technical terminology clearly
|
| 407 |
+
- Structures the content for easy learning
|
| 408 |
+
- Focuses on the most important concepts
|
| 409 |
+
|
| 410 |
+
Make the explanation engaging and accessible.
|
| 411 |
+
"""
|
| 412 |
+
return prompt
|
| 413 |
+
|
| 414 |
+
def clean_phi3_output(output):
|
| 415 |
+
"""Clean Phi-3 output to remove instructional language and meta-commentary"""
|
| 416 |
+
# Remove common instructional phrases
|
| 417 |
+
patterns_to_remove = [
|
| 418 |
+
r'Here is.*?explanation:',
|
| 419 |
+
r'I will.*?now:',
|
| 420 |
+
r'Let me.*?concept:',
|
| 421 |
+
r'This section.*?content:',
|
| 422 |
+
r'Below is.*?explanation:',
|
| 423 |
+
r'Here\'s.*?breakdown:',
|
| 424 |
+
r'In this.*?we will',
|
| 425 |
+
r'Students will.*?understand',
|
| 426 |
+
r'We can.*?explain',
|
| 427 |
+
r'The following.*?explains',
|
| 428 |
+
r'This content.*?describes',
|
| 429 |
+
r'As an AI.*?assistant',
|
| 430 |
+
]
|
| 431 |
+
|
| 432 |
+
cleaned = output
|
| 433 |
+
for pattern in patterns_to_remove:
|
| 434 |
+
cleaned = re.sub(pattern, '', cleaned, flags=re.IGNORECASE)
|
| 435 |
+
|
| 436 |
+
# Remove any empty lines at the start
|
| 437 |
+
cleaned = re.sub(r'^\s*\n+', '', cleaned)
|
| 438 |
+
|
| 439 |
+
return cleaned.strip()
|
components/tutor_flow.py
ADDED
|
@@ -0,0 +1,804 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import re
|
| 3 |
+
from generator import model_manager
|
| 4 |
+
from components.export_handler import generate_pdf
|
| 5 |
+
from components.session_manager import update_session_state
|
| 6 |
+
from components.file_processor import process_uploaded_file # ADD THIS IMPORT
|
| 7 |
+
|
| 8 |
+
def render_tutor_flow():
|
| 9 |
+
"""Render the tutor content generation flow"""
|
| 10 |
+
st.header("π¨βπ« Tutor Content Creator")
|
| 11 |
+
render_tutor_info()
|
| 12 |
+
|
| 13 |
+
# Check if we need to regenerate with a different model
|
| 14 |
+
if st.session_state.get("regenerate_with_new_model") and st.session_state.get("original_topic"):
|
| 15 |
+
handle_tutor_regeneration()
|
| 16 |
+
return
|
| 17 |
+
|
| 18 |
+
# GET INPUT METHOD FIRST
|
| 19 |
+
input_method = get_tutor_input_method()
|
| 20 |
+
|
| 21 |
+
if input_method == "Upload Document":
|
| 22 |
+
topic, objectives, student_level, content_type, additional_req, document_text, filename = get_tutor_inputs_from_document()
|
| 23 |
+
if topic and document_text and st.button("π Generate from Document", type="primary", key="generate_from_document"):
|
| 24 |
+
generate_tutor_content_from_document(topic, objectives, student_level, content_type, additional_req, document_text, filename)
|
| 25 |
+
else:
|
| 26 |
+
topic, objectives, student_level, content_type, additional_req = get_tutor_inputs_manual()
|
| 27 |
+
if topic and objectives and st.button("π Create Teaching Content", type="primary", key="generate_tutor_content"):
|
| 28 |
+
generate_tutor_content(topic, objectives, student_level, content_type, additional_req)
|
| 29 |
+
|
| 30 |
+
def get_tutor_input_method():
|
| 31 |
+
"""Let tutor choose between manual input or document upload"""
|
| 32 |
+
st.subheader("π₯ Input Method")
|
| 33 |
+
return st.radio(
|
| 34 |
+
"How would you like to provide the content?",
|
| 35 |
+
["Describe Topic & Objectives", "Upload Document"],
|
| 36 |
+
help="Choose to either describe what you need or upload existing materials to transform"
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
def get_tutor_inputs_from_document():
|
| 40 |
+
"""Get inputs from tutor when uploading a document"""
|
| 41 |
+
st.subheader("π Upload Your Document")
|
| 42 |
+
|
| 43 |
+
uploaded_file = st.file_uploader(
|
| 44 |
+
"Upload your educational document",
|
| 45 |
+
type=["pdf", "pptx", "docx", "txt"],
|
| 46 |
+
help="Upload lesson plans, curriculum materials, textbook chapters, or any educational content"
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
document_text = ""
|
| 50 |
+
filename = "content.pdf"
|
| 51 |
+
|
| 52 |
+
if uploaded_file:
|
| 53 |
+
with st.spinner("π Reading your document..."):
|
| 54 |
+
document_text, error = process_uploaded_file(uploaded_file)
|
| 55 |
+
if error:
|
| 56 |
+
st.error(f"β {error}")
|
| 57 |
+
else:
|
| 58 |
+
st.success("β
Document processed successfully!")
|
| 59 |
+
filename = uploaded_file.name
|
| 60 |
+
|
| 61 |
+
# Show document preview
|
| 62 |
+
with st.expander("π Document Preview", expanded=False):
|
| 63 |
+
st.text_area("Extracted Text", document_text[:1000] + "..." if len(document_text) > 1000 else document_text, height=200, key="doc_preview")
|
| 64 |
+
|
| 65 |
+
st.subheader("π― Transformation Instructions")
|
| 66 |
+
|
| 67 |
+
topic = st.text_input(
|
| 68 |
+
"What topic is this document about?",
|
| 69 |
+
placeholder="e.g., Neural Networks, French Revolution, Calculus Basics",
|
| 70 |
+
help="Briefly describe the main topic of the document"
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
content_type = st.selectbox(
|
| 74 |
+
"What would you like me to create from this document?",
|
| 75 |
+
["Lecture Notes", "Study Guide", "Interactive Activity", "Lesson Plan", "Comprehensive Explanation", "Assessment Questions"],
|
| 76 |
+
help="Choose the format you want me to generate based on your document"
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
student_level = st.selectbox(
|
| 80 |
+
"What level should the content be adapted for?",
|
| 81 |
+
["Elementary School", "Middle School", "High School", "Undergraduate", "Graduate", "Professional Development"],
|
| 82 |
+
help="Select the target student level for the generated content"
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
additional_req = st.text_area(
|
| 86 |
+
"Any specific transformation requirements?",
|
| 87 |
+
placeholder="e.g., 'Make it more interactive', 'Simplify the language', 'Add real-world examples', 'Focus on key concepts'",
|
| 88 |
+
help="Specify how you want the content transformed"
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
# For document-based generation, objectives are optional since they can be extracted
|
| 92 |
+
objectives = st.text_area(
|
| 93 |
+
"Learning Objectives (Optional)",
|
| 94 |
+
placeholder="e.g., 'Students should understand X, apply Y, analyze Z'",
|
| 95 |
+
help="Optional: Specify what students should learn. If empty, I'll infer from the document."
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
return topic, objectives, student_level, content_type, additional_req, document_text, filename
|
| 99 |
+
|
| 100 |
+
def get_tutor_inputs_manual():
|
| 101 |
+
"""Get all inputs from tutor (original manual method)"""
|
| 102 |
+
st.subheader("π Teaching Topic")
|
| 103 |
+
topic = st.text_area(
|
| 104 |
+
"What topic do you want to teach?",
|
| 105 |
+
placeholder="e.g., Neural Networks, Quantum Computing, Calculus Fundamentals, French Revolution",
|
| 106 |
+
help="Be specific about the topic or concept",
|
| 107 |
+
key="tutor_topic_input"
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
st.subheader("π― Learning Objectives")
|
| 111 |
+
objectives = st.text_area(
|
| 112 |
+
"What should students learn from this?",
|
| 113 |
+
placeholder="e.g., 'Understand backpropagation', 'Apply gradient descent', 'Explain the causes of WWI'",
|
| 114 |
+
help="List the key learning outcomes for students",
|
| 115 |
+
key="tutor_objectives_input"
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
st.subheader("π₯ Student Level")
|
| 119 |
+
student_level = st.selectbox(
|
| 120 |
+
"What level are your students?",
|
| 121 |
+
["Elementary School", "Middle School", "High School", "Undergraduate", "Graduate", "Professional Development"],
|
| 122 |
+
help="Select the appropriate level for your students",
|
| 123 |
+
key="tutor_student_level"
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
st.subheader("π Content Format")
|
| 127 |
+
content_type = st.selectbox(
|
| 128 |
+
"What type of content do you need?",
|
| 129 |
+
["Lesson Plan", "Study Guide", "Lecture Notes", "Interactive Activity", "Comprehensive Explanation"],
|
| 130 |
+
help="Choose the format that best suits your teaching needs",
|
| 131 |
+
key="tutor_content_type_select"
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
st.subheader("β‘ Additional Requirements (Optional)")
|
| 135 |
+
additional_req = st.text_area(
|
| 136 |
+
"Any specific requirements?",
|
| 137 |
+
placeholder="e.g., 'Include code examples', 'Use historical primary sources', 'Focus on practical applications'",
|
| 138 |
+
help="Specify any particular focus or requirements",
|
| 139 |
+
key="tutor_additional_req"
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
return topic, objectives, student_level, content_type, additional_req
|
| 143 |
+
|
| 144 |
+
def generate_tutor_content_from_document(topic, objectives, student_level, content_type, additional_req, document_text, filename):
|
| 145 |
+
"""Generate content for tutor based on uploaded document"""
|
| 146 |
+
# STORE ORIGINAL INPUTS FOR REGENERATION
|
| 147 |
+
st.session_state.original_topic = topic
|
| 148 |
+
st.session_state.original_objectives = objectives
|
| 149 |
+
st.session_state.original_additional_req = additional_req
|
| 150 |
+
st.session_state.original_document_text = document_text
|
| 151 |
+
st.session_state.original_filename = filename
|
| 152 |
+
|
| 153 |
+
with st.spinner("π Transforming your document into new content..."):
|
| 154 |
+
selected_model = st.session_state.get("selected_model", "groq")
|
| 155 |
+
|
| 156 |
+
# Build document-based prompt
|
| 157 |
+
if selected_model == "phi3":
|
| 158 |
+
prompt = build_phi3_document_prompt(topic, objectives, student_level, content_type, additional_req, document_text)
|
| 159 |
+
else:
|
| 160 |
+
prompt = build_groq_document_prompt(topic, objectives, student_level, content_type, additional_req, document_text)
|
| 161 |
+
|
| 162 |
+
try:
|
| 163 |
+
output = model_manager.generate(
|
| 164 |
+
prompt,
|
| 165 |
+
selected_model,
|
| 166 |
+
user_type="tutor",
|
| 167 |
+
student_level=student_level,
|
| 168 |
+
content_type=content_type
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
# Check if it's an error message
|
| 172 |
+
if any(msg in output for msg in ["π«", "π", "β", "[Error", "[RateLimit]", "[Quota]", "[Auth]", "[Empty]", "β Phi-3 Error:"]):
|
| 173 |
+
st.error(output)
|
| 174 |
+
return
|
| 175 |
+
|
| 176 |
+
# Generate PDF
|
| 177 |
+
pdf_data = generate_pdf(
|
| 178 |
+
output,
|
| 179 |
+
"tutor",
|
| 180 |
+
level=student_level,
|
| 181 |
+
topic=topic,
|
| 182 |
+
content_type=f"{content_type} from Document",
|
| 183 |
+
objectives=objectives or "Derived from uploaded document"
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
# Update session state
|
| 187 |
+
update_session_state(
|
| 188 |
+
original_prompt=prompt,
|
| 189 |
+
generated_output=output,
|
| 190 |
+
feedback_given=False,
|
| 191 |
+
regenerated=False,
|
| 192 |
+
content_source="tutor_document",
|
| 193 |
+
student_level=student_level,
|
| 194 |
+
tutor_topic=topic,
|
| 195 |
+
tutor_content_type=content_type,
|
| 196 |
+
pdf_export_data=pdf_data,
|
| 197 |
+
saved_to_history=False,
|
| 198 |
+
current_history_id=None,
|
| 199 |
+
generated_model=selected_model
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
st.rerun()
|
| 203 |
+
|
| 204 |
+
except Exception as e:
|
| 205 |
+
st.error(f"β Generation failed: {str(e)}")
|
| 206 |
+
|
| 207 |
+
def build_phi3_document_prompt(topic, objectives, student_level, content_type, additional_req, document_text):
|
| 208 |
+
"""Build Phi-3 prompt for document-based content generation"""
|
| 209 |
+
|
| 210 |
+
content_descriptions = {
|
| 211 |
+
"Lecture Notes": "detailed lecture notes suitable for classroom teaching",
|
| 212 |
+
"Study Guide": "comprehensive study guide for student self-study",
|
| 213 |
+
"Interactive Activity": "engaging interactive learning activities for students",
|
| 214 |
+
"Lesson Plan": "structured lesson plan with timing and activities",
|
| 215 |
+
"Comprehensive Explanation": "thorough explanatory document",
|
| 216 |
+
"Assessment Questions": "quiz questions, exercises, or assessment materials"
|
| 217 |
+
}
|
| 218 |
+
|
| 219 |
+
description = content_descriptions.get(content_type, "educational content")
|
| 220 |
+
|
| 221 |
+
prompt = f"""Transform the provided educational document into {description}.
|
| 222 |
+
|
| 223 |
+
ORIGINAL DOCUMENT CONTENT:
|
| 224 |
+
{document_text}
|
| 225 |
+
|
| 226 |
+
TOPIC: {topic}
|
| 227 |
+
"""
|
| 228 |
+
if objectives:
|
| 229 |
+
prompt += f"\nLEARNING OBJECTIVES: {objectives}"
|
| 230 |
+
|
| 231 |
+
prompt += f"""
|
| 232 |
+
TARGET AUDIENCE: {student_level} students
|
| 233 |
+
OUTPUT FORMAT: {content_type}
|
| 234 |
+
"""
|
| 235 |
+
if additional_req:
|
| 236 |
+
prompt += f"\nSPECIFIC REQUIREMENTS: {additional_req}"
|
| 237 |
+
|
| 238 |
+
prompt += f"""
|
| 239 |
+
|
| 240 |
+
TRANSFORMATION INSTRUCTIONS:
|
| 241 |
+
- Create {content_type.lower()} based on the original document content
|
| 242 |
+
- Adapt the material for {student_level} students
|
| 243 |
+
- Maintain the core educational concepts but reformat for the new purpose
|
| 244 |
+
- Use appropriate language and examples for the target level
|
| 245 |
+
- Structure the content effectively for {content_type.lower()}
|
| 246 |
+
|
| 247 |
+
FORBIDDEN:
|
| 248 |
+
- Do not simply copy the original content
|
| 249 |
+
- Do not use phrases like "based on the document" or "the original content says"
|
| 250 |
+
- Do not refer to yourself as an AI or assistant
|
| 251 |
+
- Do not include meta-commentary about the transformation process
|
| 252 |
+
|
| 253 |
+
BEGIN {content_type.upper()}:
|
| 254 |
+
|
| 255 |
+
"""
|
| 256 |
+
return prompt
|
| 257 |
+
|
| 258 |
+
def build_groq_document_prompt(topic, objectives, student_level, content_type, additional_req, document_text):
|
| 259 |
+
"""Build Groq prompt for document-based content generation"""
|
| 260 |
+
|
| 261 |
+
prompt = f"""Create {content_type.lower()} based on the following document:
|
| 262 |
+
|
| 263 |
+
DOCUMENT CONTENT:
|
| 264 |
+
{document_text}
|
| 265 |
+
|
| 266 |
+
TOPIC: {topic}
|
| 267 |
+
"""
|
| 268 |
+
if objectives:
|
| 269 |
+
prompt += f"\nLEARNING OBJECTIVES: {objectives}"
|
| 270 |
+
|
| 271 |
+
prompt += f"""
|
| 272 |
+
STUDENT LEVEL: {student_level}
|
| 273 |
+
CONTENT TYPE: {content_type}
|
| 274 |
+
"""
|
| 275 |
+
if additional_req:
|
| 276 |
+
prompt += f"\nADDITIONAL REQUIREMENTS: {additional_req}"
|
| 277 |
+
|
| 278 |
+
prompt += f"""
|
| 279 |
+
|
| 280 |
+
Transform the document content into effective {content_type.lower()} suitable for {student_level} students.
|
| 281 |
+
"""
|
| 282 |
+
return prompt
|
| 283 |
+
|
| 284 |
+
def handle_tutor_regeneration():
|
| 285 |
+
"""Handle tutor content regeneration with new model"""
|
| 286 |
+
st.header("π¨βπ« Tutor Content Creator")
|
| 287 |
+
render_tutor_info()
|
| 288 |
+
|
| 289 |
+
# Show we're regenerating
|
| 290 |
+
st.info("π Regenerating your content with the new model...")
|
| 291 |
+
|
| 292 |
+
# Check if this was document-based content
|
| 293 |
+
if st.session_state.get("content_source") == "tutor_document" and st.session_state.get("original_document_text"):
|
| 294 |
+
# Document-based regeneration
|
| 295 |
+
topic = st.session_state.original_topic
|
| 296 |
+
objectives = st.session_state.original_objectives
|
| 297 |
+
student_level = st.session_state.student_level
|
| 298 |
+
content_type = st.session_state.tutor_content_type
|
| 299 |
+
additional_req = st.session_state.get("original_additional_req", "")
|
| 300 |
+
document_text = st.session_state.original_document_text
|
| 301 |
+
filename = st.session_state.get("original_filename", "content.pdf")
|
| 302 |
+
|
| 303 |
+
# Show original inputs for context
|
| 304 |
+
with st.expander("π Original Inputs (Read-only)", expanded=True):
|
| 305 |
+
st.write(f"**Source Document:** {filename}")
|
| 306 |
+
st.write(f"**Topic:** {topic}")
|
| 307 |
+
st.write(f"**Student Level:** {student_level}")
|
| 308 |
+
st.write(f"**Content Type:** {content_type}")
|
| 309 |
+
if objectives:
|
| 310 |
+
st.write(f"**Learning Objectives:** {objectives}")
|
| 311 |
+
if additional_req:
|
| 312 |
+
st.write(f"**Transformation Requirements:** {additional_req}")
|
| 313 |
+
|
| 314 |
+
# Regenerate from document
|
| 315 |
+
generate_tutor_content_from_document(topic, objectives, student_level, content_type, additional_req, document_text, filename)
|
| 316 |
+
else:
|
| 317 |
+
# Manual input regeneration (existing code)
|
| 318 |
+
topic = st.session_state.original_topic
|
| 319 |
+
objectives = st.session_state.original_objectives
|
| 320 |
+
student_level = st.session_state.student_level
|
| 321 |
+
content_type = st.session_state.tutor_content_type
|
| 322 |
+
additional_req = st.session_state.get("original_additional_req", "")
|
| 323 |
+
|
| 324 |
+
# Show original inputs for context
|
| 325 |
+
with st.expander("π Original Inputs (Read-only)", expanded=True):
|
| 326 |
+
st.write(f"**Topic:** {topic}")
|
| 327 |
+
st.write(f"**Student Level:** {student_level}")
|
| 328 |
+
st.write(f"**Content Type:** {content_type}")
|
| 329 |
+
st.write(f"**Learning Objectives:** {objectives}")
|
| 330 |
+
if additional_req:
|
| 331 |
+
st.write(f"**Additional Requirements:** {additional_req}")
|
| 332 |
+
|
| 333 |
+
# Regenerate the content
|
| 334 |
+
generate_tutor_content(topic, objectives, student_level, content_type, additional_req)
|
| 335 |
+
|
| 336 |
+
def render_tutor_info():
|
| 337 |
+
"""Render tutor flow information"""
|
| 338 |
+
st.info("""
|
| 339 |
+
**How this works:**
|
| 340 |
+
- **Describe Topic & Objectives**: Tell me what you want to teach, and I'll generate educational content from scratch
|
| 341 |
+
- **Upload Document**: Upload existing materials (lesson plans, textbooks, etc.) and I'll transform them into new formats like lecture notes, study guides, or interactive activities
|
| 342 |
+
|
| 343 |
+
**Perfect for**: Converting lesson plans to lecture notes, textbook chapters to study guides, curriculum materials to interactive activities
|
| 344 |
+
""")
|
| 345 |
+
|
| 346 |
+
def generate_tutor_content(topic, objectives, student_level, content_type, additional_req):
|
| 347 |
+
"""Generate content for tutor with optimized content handling"""
|
| 348 |
+
# STORE ORIGINAL INPUTS FOR REGENERATION
|
| 349 |
+
st.session_state.original_topic = topic
|
| 350 |
+
st.session_state.original_objectives = objectives
|
| 351 |
+
st.session_state.original_additional_req = additional_req
|
| 352 |
+
|
| 353 |
+
total_content_size = len(topic) + len(objectives) + len(additional_req)
|
| 354 |
+
|
| 355 |
+
if total_content_size > 15000:
|
| 356 |
+
st.info("π Creating comprehensive content with detailed sections...")
|
| 357 |
+
generate_chunked_tutor_content(topic, objectives, student_level, content_type, additional_req)
|
| 358 |
+
elif total_content_size > 8000:
|
| 359 |
+
st.info("π Processing your comprehensive teaching content...")
|
| 360 |
+
generate_single_large_tutor_content(topic, objectives, student_level, content_type, additional_req)
|
| 361 |
+
else:
|
| 362 |
+
generate_single_tutor_content(topic, objectives, student_level, content_type, additional_req)
|
| 363 |
+
|
| 364 |
+
def generate_single_tutor_content(topic, objectives, student_level, content_type, additional_req):
|
| 365 |
+
"""Generate content for normal-sized tutor requests"""
|
| 366 |
+
with st.spinner("βοΈ Generating educational content..."):
|
| 367 |
+
selected_model = st.session_state.get("selected_model", "groq")
|
| 368 |
+
|
| 369 |
+
# Use Phi-3 specific prompts if Phi-3 is selected
|
| 370 |
+
if selected_model == "phi3":
|
| 371 |
+
prompt = build_phi3_tutor_prompt(topic, objectives, student_level, content_type, additional_req)
|
| 372 |
+
else:
|
| 373 |
+
prompt = build_groq_tutor_prompt(topic, objectives, student_level, content_type, additional_req)
|
| 374 |
+
|
| 375 |
+
try:
|
| 376 |
+
output = model_manager.generate(
|
| 377 |
+
prompt,
|
| 378 |
+
selected_model,
|
| 379 |
+
user_type="tutor",
|
| 380 |
+
student_level=student_level,
|
| 381 |
+
content_type=content_type
|
| 382 |
+
)
|
| 383 |
+
|
| 384 |
+
# Check if it's an error message
|
| 385 |
+
if any(msg in output for msg in ["π«", "π", "β", "[Error", "[RateLimit]", "[Quota]", "[Auth]", "[Empty]", "β Phi-3 Error:"]):
|
| 386 |
+
st.error(output)
|
| 387 |
+
return
|
| 388 |
+
|
| 389 |
+
# Generate PDF
|
| 390 |
+
pdf_data = generate_pdf(
|
| 391 |
+
output,
|
| 392 |
+
"tutor",
|
| 393 |
+
level=student_level,
|
| 394 |
+
topic=topic,
|
| 395 |
+
content_type=content_type,
|
| 396 |
+
objectives=objectives
|
| 397 |
+
)
|
| 398 |
+
|
| 399 |
+
# Update session state
|
| 400 |
+
update_session_state(
|
| 401 |
+
original_prompt=prompt,
|
| 402 |
+
generated_output=output,
|
| 403 |
+
feedback_given=False,
|
| 404 |
+
regenerated=False,
|
| 405 |
+
content_source="tutor",
|
| 406 |
+
student_level=student_level,
|
| 407 |
+
tutor_topic=topic,
|
| 408 |
+
tutor_content_type=content_type,
|
| 409 |
+
pdf_export_data=pdf_data,
|
| 410 |
+
saved_to_history=False,
|
| 411 |
+
current_history_id=None,
|
| 412 |
+
generated_model=selected_model
|
| 413 |
+
)
|
| 414 |
+
|
| 415 |
+
st.rerun()
|
| 416 |
+
|
| 417 |
+
except Exception as e:
|
| 418 |
+
st.error(f"β Generation failed: {str(e)}")
|
| 419 |
+
|
| 420 |
+
def generate_single_large_tutor_content(topic, objectives, student_level, content_type, additional_req):
|
| 421 |
+
"""Generate content for large tutor requests using high-capacity models"""
|
| 422 |
+
with st.spinner("βοΈ Generating comprehensive educational content..."):
|
| 423 |
+
selected_model = st.session_state.get("selected_model", "groq")
|
| 424 |
+
|
| 425 |
+
# Use Phi-3 specific prompts if Phi-3 is selected
|
| 426 |
+
if selected_model == "phi3":
|
| 427 |
+
prompt = build_phi3_tutor_prompt(topic, objectives, student_level, content_type, additional_req)
|
| 428 |
+
else:
|
| 429 |
+
prompt = build_groq_tutor_prompt(topic, objectives, student_level, content_type, additional_req)
|
| 430 |
+
|
| 431 |
+
try:
|
| 432 |
+
if selected_model == "phi3":
|
| 433 |
+
output = model_manager.generate(
|
| 434 |
+
prompt,
|
| 435 |
+
selected_model,
|
| 436 |
+
user_type="tutor",
|
| 437 |
+
student_level=student_level,
|
| 438 |
+
content_type=content_type
|
| 439 |
+
)
|
| 440 |
+
else:
|
| 441 |
+
output = model_manager.groq_generator.generate_large_content(prompt)
|
| 442 |
+
|
| 443 |
+
if any(msg in output for msg in ["π«", "π", "β", "[Error", "[RateLimit]", "[Quota]", "[Auth]", "[Empty]", "β Phi-3 Error:"]):
|
| 444 |
+
st.error(output)
|
| 445 |
+
return
|
| 446 |
+
|
| 447 |
+
# Generate PDF
|
| 448 |
+
pdf_data = generate_pdf(
|
| 449 |
+
output,
|
| 450 |
+
"tutor",
|
| 451 |
+
level=student_level,
|
| 452 |
+
topic=topic,
|
| 453 |
+
content_type=content_type,
|
| 454 |
+
objectives=objectives
|
| 455 |
+
)
|
| 456 |
+
|
| 457 |
+
# Update session state
|
| 458 |
+
update_session_state(
|
| 459 |
+
original_prompt=prompt,
|
| 460 |
+
generated_output=output,
|
| 461 |
+
feedback_given=False,
|
| 462 |
+
regenerated=False,
|
| 463 |
+
content_source="tutor",
|
| 464 |
+
student_level=student_level,
|
| 465 |
+
tutor_topic=topic,
|
| 466 |
+
tutor_content_type=content_type,
|
| 467 |
+
pdf_export_data=pdf_data,
|
| 468 |
+
saved_to_history=False,
|
| 469 |
+
current_history_id=None,
|
| 470 |
+
generated_model=selected_model
|
| 471 |
+
)
|
| 472 |
+
|
| 473 |
+
st.rerun()
|
| 474 |
+
|
| 475 |
+
except Exception as e:
|
| 476 |
+
st.error(f"β Generation failed: {str(e)}")
|
| 477 |
+
|
| 478 |
+
def generate_chunked_tutor_content(topic, objectives, student_level, content_type, additional_req):
|
| 479 |
+
"""Generate comprehensive tutor content by breaking down objectives"""
|
| 480 |
+
objective_chunks = chunk_objectives(objectives, max_chunk_size=4000)
|
| 481 |
+
|
| 482 |
+
if not objective_chunks:
|
| 483 |
+
generate_single_large_tutor_content(topic, objectives, student_level, content_type, additional_req)
|
| 484 |
+
return
|
| 485 |
+
|
| 486 |
+
all_outputs = []
|
| 487 |
+
progress_bar = st.progress(0)
|
| 488 |
+
status_text = st.empty()
|
| 489 |
+
|
| 490 |
+
selected_model = st.session_state.get("selected_model", "groq")
|
| 491 |
+
|
| 492 |
+
for i, objective_chunk in enumerate(objective_chunks):
|
| 493 |
+
status_text.text(f"π Creating content for learning objective {i+1}/{len(objective_chunks)}...")
|
| 494 |
+
progress_bar.progress((i) / len(objective_chunks))
|
| 495 |
+
|
| 496 |
+
# Use Phi-3 specific prompts if Phi-3 is selected
|
| 497 |
+
if selected_model == "phi3":
|
| 498 |
+
prompt = build_phi3_tutor_chunk_prompt(topic, objective_chunk, student_level, content_type, additional_req, i+1, len(objective_chunks))
|
| 499 |
+
else:
|
| 500 |
+
prompt = build_groq_tutor_chunk_prompt(topic, objective_chunk, student_level, content_type, additional_req, i+1, len(objective_chunks))
|
| 501 |
+
|
| 502 |
+
try:
|
| 503 |
+
output = model_manager.generate(
|
| 504 |
+
prompt,
|
| 505 |
+
selected_model,
|
| 506 |
+
user_type="tutor",
|
| 507 |
+
student_level=student_level,
|
| 508 |
+
content_type=content_type
|
| 509 |
+
)
|
| 510 |
+
|
| 511 |
+
if any(msg in output for msg in ["π«", "π", "β", "[Error", "[RateLimit]", "[Quota]", "[Auth]", "[Empty]", "β Phi-3 Error:"]):
|
| 512 |
+
st.error(f"β Failed to process objective {i+1}: {output}")
|
| 513 |
+
return
|
| 514 |
+
|
| 515 |
+
all_outputs.append(output)
|
| 516 |
+
|
| 517 |
+
except Exception as e:
|
| 518 |
+
st.error(f"β Failed to process objective {i+1}: {str(e)}")
|
| 519 |
+
return
|
| 520 |
+
|
| 521 |
+
# Update progress to complete
|
| 522 |
+
progress_bar.progress(1.0)
|
| 523 |
+
status_text.text("β
All sections processed! Combining results...")
|
| 524 |
+
|
| 525 |
+
# Combine all outputs
|
| 526 |
+
final_output = combine_tutor_outputs(all_outputs, topic, student_level, content_type)
|
| 527 |
+
|
| 528 |
+
# Generate PDF and update session state
|
| 529 |
+
pdf_data = generate_pdf(
|
| 530 |
+
final_output,
|
| 531 |
+
"tutor",
|
| 532 |
+
level=student_level,
|
| 533 |
+
topic=topic,
|
| 534 |
+
content_type=content_type,
|
| 535 |
+
objectives=objectives
|
| 536 |
+
)
|
| 537 |
+
|
| 538 |
+
update_session_state(
|
| 539 |
+
original_prompt=f"{content_type} for {topic} - {student_level} level",
|
| 540 |
+
generated_output=final_output,
|
| 541 |
+
feedback_given=False,
|
| 542 |
+
regenerated=False,
|
| 543 |
+
content_source="tutor",
|
| 544 |
+
student_level=student_level,
|
| 545 |
+
tutor_topic=topic,
|
| 546 |
+
tutor_content_type=content_type,
|
| 547 |
+
pdf_export_data=pdf_data,
|
| 548 |
+
saved_to_history=False,
|
| 549 |
+
current_history_id=None,
|
| 550 |
+
generated_model=selected_model
|
| 551 |
+
)
|
| 552 |
+
|
| 553 |
+
status_text.text("β
Content generation complete!")
|
| 554 |
+
st.rerun()
|
| 555 |
+
|
| 556 |
+
def chunk_objectives(objectives, max_chunk_size=4000):
|
| 557 |
+
"""Split objectives into manageable chunks with increased size"""
|
| 558 |
+
objective_items = re.split(r'[\nβ’\-]', objectives)
|
| 559 |
+
objective_items = [item.strip() for item in objective_items if item.strip()]
|
| 560 |
+
|
| 561 |
+
chunks = []
|
| 562 |
+
current_chunk = ""
|
| 563 |
+
|
| 564 |
+
for item in objective_items:
|
| 565 |
+
if len(current_chunk) + len(item) < max_chunk_size:
|
| 566 |
+
if current_chunk:
|
| 567 |
+
current_chunk += "\nβ’ " + item
|
| 568 |
+
else:
|
| 569 |
+
current_chunk = "β’ " + item
|
| 570 |
+
else:
|
| 571 |
+
if current_chunk:
|
| 572 |
+
chunks.append(current_chunk)
|
| 573 |
+
current_chunk = "β’ " + item
|
| 574 |
+
|
| 575 |
+
if current_chunk:
|
| 576 |
+
chunks.append(current_chunk)
|
| 577 |
+
|
| 578 |
+
if len(chunks) > 5 and max_chunk_size < 6000:
|
| 579 |
+
return chunk_objectives(objectives, max_chunk_size + 1000)
|
| 580 |
+
|
| 581 |
+
return chunks
|
| 582 |
+
|
| 583 |
+
def build_phi3_tutor_chunk_prompt(topic, objective_chunk, student_level, content_type, additional_req, chunk_num, total_chunks):
|
| 584 |
+
"""Build Phi-3 specific prompt for a single tutor chunk"""
|
| 585 |
+
prompt = f"""You are creating educational content. Write the actual content that teaches these concepts.
|
| 586 |
+
|
| 587 |
+
TOPIC: {topic}
|
| 588 |
+
|
| 589 |
+
CONCEPTS TO EXPLAIN:
|
| 590 |
+
{objective_chunk}
|
| 591 |
+
|
| 592 |
+
AUDIENCE: {student_level} students
|
| 593 |
+
FORMAT: {content_type}
|
| 594 |
+
"""
|
| 595 |
+
if additional_req:
|
| 596 |
+
prompt += f"\nSPECIFIC FOCUS: {additional_req}"
|
| 597 |
+
|
| 598 |
+
prompt += f"""
|
| 599 |
+
|
| 600 |
+
CONTENT REQUIREMENTS:
|
| 601 |
+
- Write the actual educational material, not a lesson plan
|
| 602 |
+
- Explain concepts clearly with examples
|
| 603 |
+
- Use appropriate language for {student_level}
|
| 604 |
+
- Include definitions and key information
|
| 605 |
+
- Structure the content for learning
|
| 606 |
+
|
| 607 |
+
FORBIDDEN: Do not include timing, activities, assessments, or teaching instructions.
|
| 608 |
+
FORBIDDEN: Do not use phrases like "students will learn" or "this section will cover".
|
| 609 |
+
|
| 610 |
+
BEGIN CONTENT:
|
| 611 |
+
|
| 612 |
+
"""
|
| 613 |
+
return prompt
|
| 614 |
+
|
| 615 |
+
def build_groq_tutor_chunk_prompt(topic, objective_chunk, student_level, content_type, additional_req, chunk_num, total_chunks):
|
| 616 |
+
"""Build Groq prompt for a single tutor chunk"""
|
| 617 |
+
prompt = f"""Create educational content for the following:
|
| 618 |
+
|
| 619 |
+
TOPIC: {topic}
|
| 620 |
+
|
| 621 |
+
LEARNING OBJECTIVES:
|
| 622 |
+
{objective_chunk}
|
| 623 |
+
|
| 624 |
+
STUDENT LEVEL: {student_level}
|
| 625 |
+
CONTENT TYPE: {content_type}
|
| 626 |
+
"""
|
| 627 |
+
if additional_req:
|
| 628 |
+
prompt += f"\nADDITIONAL REQUIREMENTS: {additional_req}"
|
| 629 |
+
|
| 630 |
+
prompt += f"""
|
| 631 |
+
|
| 632 |
+
Generate comprehensive educational content that directly teaches these concepts.
|
| 633 |
+
"""
|
| 634 |
+
return prompt
|
| 635 |
+
|
| 636 |
+
def combine_tutor_outputs(outputs, topic, student_level, content_type):
|
| 637 |
+
"""Combine tutor chunk outputs into a cohesive document"""
|
| 638 |
+
combined = f"# {content_type}: {topic}\n\n"
|
| 639 |
+
combined += f"**Target Level:** {student_level}\n\n"
|
| 640 |
+
|
| 641 |
+
for i, output in enumerate(outputs):
|
| 642 |
+
# Clean up any instructional language
|
| 643 |
+
clean_output = re.sub(r'(?:Here is|I will|This section|Students will|We will).*?(?=\n\n|\n#|\n##|$)', '', output, flags=re.IGNORECASE | re.DOTALL)
|
| 644 |
+
section_title = f"## Part {i+1}\n\n"
|
| 645 |
+
combined += section_title + clean_output.strip() + "\n\n---\n\n"
|
| 646 |
+
|
| 647 |
+
return combined
|
| 648 |
+
|
| 649 |
+
def build_phi3_tutor_prompt(topic, objectives, student_level, content_type, additional_req):
|
| 650 |
+
"""Build Phi-3 specific prompt for tutor content generation"""
|
| 651 |
+
|
| 652 |
+
# Define content type requirements
|
| 653 |
+
content_requirements = {
|
| 654 |
+
"Lesson Plan": {
|
| 655 |
+
"description": "Create a structured lesson plan with timing, activities, and assessments",
|
| 656 |
+
"requirements": [
|
| 657 |
+
"Include learning objectives and outcomes",
|
| 658 |
+
"Provide a timed lesson structure with activities",
|
| 659 |
+
"Include teaching methods and student activities",
|
| 660 |
+
"Add assessment methods and homework if applicable",
|
| 661 |
+
"Use appropriate pedagogical approaches"
|
| 662 |
+
],
|
| 663 |
+
"forbidden": []
|
| 664 |
+
},
|
| 665 |
+
"Study Guide": {
|
| 666 |
+
"description": "Create a comprehensive study guide for students",
|
| 667 |
+
"requirements": [
|
| 668 |
+
"Include key concepts and definitions",
|
| 669 |
+
"Provide summaries and review questions",
|
| 670 |
+
"Add practice problems or exercises",
|
| 671 |
+
"Include study tips and strategies",
|
| 672 |
+
"Structure for easy review and self-testing"
|
| 673 |
+
],
|
| 674 |
+
"forbidden": [
|
| 675 |
+
"Do not include timing or classroom management instructions"
|
| 676 |
+
]
|
| 677 |
+
},
|
| 678 |
+
"Lecture Notes": {
|
| 679 |
+
"description": "Create detailed lecture notes for teaching",
|
| 680 |
+
"requirements": [
|
| 681 |
+
"Include comprehensive explanations",
|
| 682 |
+
"Provide examples and case studies",
|
| 683 |
+
"Add key points and summaries",
|
| 684 |
+
"Include relevant diagrams or frameworks if needed",
|
| 685 |
+
"Structure for clear presentation delivery"
|
| 686 |
+
],
|
| 687 |
+
"forbidden": [
|
| 688 |
+
"Do not include student activities or assessments"
|
| 689 |
+
]
|
| 690 |
+
},
|
| 691 |
+
"Interactive Activity": {
|
| 692 |
+
"description": "Create engaging interactive learning activities",
|
| 693 |
+
"requirements": [
|
| 694 |
+
"Design hands-on or group activities",
|
| 695 |
+
"Include clear instructions for students",
|
| 696 |
+
"Provide learning objectives for each activity",
|
| 697 |
+
"Add discussion questions or prompts",
|
| 698 |
+
"Include facilitation guidelines if needed"
|
| 699 |
+
],
|
| 700 |
+
"forbidden": [
|
| 701 |
+
"Do not include lengthy theoretical explanations"
|
| 702 |
+
]
|
| 703 |
+
},
|
| 704 |
+
"Comprehensive Explanation": {
|
| 705 |
+
"description": "Create a thorough explanatory document",
|
| 706 |
+
"requirements": [
|
| 707 |
+
"Provide in-depth conceptual explanations",
|
| 708 |
+
"Use analogies and real-world examples",
|
| 709 |
+
"Include step-by-step breakdowns of complex ideas",
|
| 710 |
+
"Add visual descriptions or mental models",
|
| 711 |
+
"Structure from basic to advanced concepts"
|
| 712 |
+
],
|
| 713 |
+
"forbidden": [
|
| 714 |
+
"Do not include activities, assessments, or teaching instructions"
|
| 715 |
+
]
|
| 716 |
+
}
|
| 717 |
+
}
|
| 718 |
+
|
| 719 |
+
# Get requirements for the specific content type
|
| 720 |
+
content_spec = content_requirements.get(content_type, content_requirements["Comprehensive Explanation"])
|
| 721 |
+
|
| 722 |
+
prompt = f"""You are creating educational content for {content_type.lower()}. Write the actual content.
|
| 723 |
+
|
| 724 |
+
TOPIC: {topic}
|
| 725 |
+
|
| 726 |
+
LEARNING GOALS:
|
| 727 |
+
{objectives}
|
| 728 |
+
|
| 729 |
+
AUDIENCE: {student_level} students
|
| 730 |
+
CONTENT TYPE: {content_type} - {content_spec['description']}
|
| 731 |
+
"""
|
| 732 |
+
if additional_req:
|
| 733 |
+
prompt += f"\nSPECIFIC FOCUS: {additional_req}"
|
| 734 |
+
|
| 735 |
+
prompt += f"""
|
| 736 |
+
|
| 737 |
+
CONTENT REQUIREMENTS:
|
| 738 |
+
- Write the actual educational material
|
| 739 |
+
- Explain concepts clearly with examples appropriate for {student_level}
|
| 740 |
+
- Use appropriate language and terminology for the audience
|
| 741 |
+
- Structure the content logically for learning
|
| 742 |
+
"""
|
| 743 |
+
|
| 744 |
+
# Add content-specific requirements
|
| 745 |
+
for requirement in content_spec['requirements']:
|
| 746 |
+
prompt += f"- {requirement}\n"
|
| 747 |
+
|
| 748 |
+
# Add content-specific forbidden items
|
| 749 |
+
if content_spec['forbidden']:
|
| 750 |
+
prompt += "\nFORBIDDEN:\n"
|
| 751 |
+
for forbidden in content_spec['forbidden']:
|
| 752 |
+
prompt += f"- {forbidden}\n"
|
| 753 |
+
else:
|
| 754 |
+
# Default forbidden items for content types that need more flexibility
|
| 755 |
+
prompt += "\nFORBIDDEN:\n- Do not use generic phrases like 'this section will cover'\n- Do not create content that is not directly educational\n"
|
| 756 |
+
|
| 757 |
+
# Add universal forbidden items that apply to all content types
|
| 758 |
+
universal_forbidden = [
|
| 759 |
+
"Do not use phrases like 'students will learn' or 'this teaches'",
|
| 760 |
+
"Do not refer to yourself as an AI or assistant",
|
| 761 |
+
"Do not add meta-commentary about the content"
|
| 762 |
+
]
|
| 763 |
+
|
| 764 |
+
for forbidden in universal_forbidden:
|
| 765 |
+
prompt += f"- {forbidden}\n"
|
| 766 |
+
|
| 767 |
+
prompt += f"""
|
| 768 |
+
|
| 769 |
+
BEGIN {content_type.upper()} CONTENT:
|
| 770 |
+
|
| 771 |
+
"""
|
| 772 |
+
return prompt
|
| 773 |
+
|
| 774 |
+
def build_groq_tutor_prompt(topic, objectives, student_level, content_type, additional_req):
|
| 775 |
+
"""Build Groq prompt for tutor content generation"""
|
| 776 |
+
|
| 777 |
+
content_descriptions = {
|
| 778 |
+
"Lesson Plan": "structured lesson plan with timing, activities, and assessments",
|
| 779 |
+
"Study Guide": "comprehensive study guide with key concepts and practice questions",
|
| 780 |
+
"Lecture Notes": "detailed lecture notes for teaching delivery",
|
| 781 |
+
"Interactive Activity": "engaging interactive learning activities",
|
| 782 |
+
"Comprehensive Explanation": "thorough explanatory document"
|
| 783 |
+
}
|
| 784 |
+
|
| 785 |
+
description = content_descriptions.get(content_type, "educational content")
|
| 786 |
+
|
| 787 |
+
prompt = f"""Create {description} for teaching:
|
| 788 |
+
|
| 789 |
+
TOPIC: {topic}
|
| 790 |
+
|
| 791 |
+
LEARNING OBJECTIVES:
|
| 792 |
+
{objectives}
|
| 793 |
+
|
| 794 |
+
STUDENT LEVEL: {student_level}
|
| 795 |
+
CONTENT TYPE: {content_type}
|
| 796 |
+
"""
|
| 797 |
+
if additional_req:
|
| 798 |
+
prompt += f"\nADDITIONAL REQUIREMENTS: {additional_req}"
|
| 799 |
+
|
| 800 |
+
prompt += f"""
|
| 801 |
+
|
| 802 |
+
Generate detailed {content_type.lower()} that achieves the learning objectives.
|
| 803 |
+
"""
|
| 804 |
+
return prompt
|
components/ui_components.py
ADDED
|
@@ -0,0 +1,313 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from db.helpers import get_research_stats
|
| 3 |
+
from generator import model_manager
|
| 4 |
+
from export_training_data_from_db import export_training_data_from_db
|
| 5 |
+
|
| 6 |
+
def render_header():
|
| 7 |
+
st.title("π§ TailorED - AI-Powered Educational Content Generator")
|
| 8 |
+
|
| 9 |
+
def render_sidebar():
|
| 10 |
+
with st.sidebar:
|
| 11 |
+
# === RESEARCH MODEL SELECTION ===
|
| 12 |
+
st.subheader("π¬ Research Model Selection")
|
| 13 |
+
|
| 14 |
+
# Initialize model choice if not exists
|
| 15 |
+
if "selected_model" not in st.session_state:
|
| 16 |
+
st.session_state.selected_model = "groq"
|
| 17 |
+
|
| 18 |
+
# Check if we have existing content and need to show regeneration prompt
|
| 19 |
+
if (st.session_state.get("generated_output") and
|
| 20 |
+
st.session_state.get("current_page") == "generator" and
|
| 21 |
+
not st.session_state.get("showing_regeneration_prompt", False)):
|
| 22 |
+
|
| 23 |
+
# Store current model before potential change
|
| 24 |
+
previous_model = st.session_state.selected_model
|
| 25 |
+
|
| 26 |
+
# Model selection with regeneration logic
|
| 27 |
+
model_choice = st.radio(
|
| 28 |
+
"Select AI Model:",
|
| 29 |
+
options=[
|
| 30 |
+
"π§ͺ Phi-3 (Research Model)",
|
| 31 |
+
"π Groq (Training Data)"
|
| 32 |
+
],
|
| 33 |
+
index=0 if st.session_state.selected_model == "phi3" else 1,
|
| 34 |
+
key="research_model_selection"
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
# Determine new model selection
|
| 38 |
+
new_model = "phi3" if model_choice == "π§ͺ Phi-3 (Research Model)" else "groq"
|
| 39 |
+
|
| 40 |
+
# If model changed and we have content, show regeneration prompt
|
| 41 |
+
if new_model != previous_model:
|
| 42 |
+
st.session_state.pending_model_switch = new_model
|
| 43 |
+
st.session_state.previous_model = previous_model
|
| 44 |
+
st.session_state.showing_regeneration_prompt = True
|
| 45 |
+
st.rerun()
|
| 46 |
+
|
| 47 |
+
else:
|
| 48 |
+
# Normal model selection (no content or prompt already shown)
|
| 49 |
+
model_choice = st.radio(
|
| 50 |
+
"Select AI Model:",
|
| 51 |
+
options=[
|
| 52 |
+
"π§ͺ Phi-3 (Research Model)",
|
| 53 |
+
"π Groq (Training Data)"
|
| 54 |
+
],
|
| 55 |
+
index=0 if st.session_state.selected_model == "phi3" else 1,
|
| 56 |
+
key="research_model_selection"
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
# Update model selection
|
| 60 |
+
new_model = "phi3" if model_choice == "π§ͺ Phi-3 (Research Model)" else "groq"
|
| 61 |
+
if new_model != st.session_state.selected_model:
|
| 62 |
+
st.session_state.selected_model = new_model
|
| 63 |
+
if not st.session_state.get("generated_output"):
|
| 64 |
+
st.success(f"β
Switched to {new_model.upper()} model")
|
| 65 |
+
|
| 66 |
+
# Show current model status
|
| 67 |
+
current_model = st.session_state.selected_model
|
| 68 |
+
if current_model == "phi3":
|
| 69 |
+
st.info("π§ͺ **Testing Phi-3** - Research model being evaluated")
|
| 70 |
+
else:
|
| 71 |
+
st.success("π **Generating Training Data** - Groq outputs will train Phi-3")
|
| 72 |
+
|
| 73 |
+
# Render regeneration prompt if needed
|
| 74 |
+
if st.session_state.get("showing_regeneration_prompt", False):
|
| 75 |
+
render_regeneration_prompt()
|
| 76 |
+
|
| 77 |
+
# Research context
|
| 78 |
+
st.markdown("---")
|
| 79 |
+
st.markdown("### π― Research Mission")
|
| 80 |
+
st.markdown("""
|
| 81 |
+
We're **fine-tuning Phi-3 Mini** using Groq's high-quality outputs.
|
| 82 |
+
|
| 83 |
+
**Your Role:** Compare both models to help improve Phi-3!
|
| 84 |
+
- Use **Groq** to create training examples
|
| 85 |
+
- Use **Phi-3** to test research progress
|
| 86 |
+
- Switch models to compare outputs on the same content
|
| 87 |
+
""")
|
| 88 |
+
|
| 89 |
+
st.markdown("---")
|
| 90 |
+
|
| 91 |
+
st.header("π Research Progress")
|
| 92 |
+
st.write("**Your feedback trains better educational AI**")
|
| 93 |
+
|
| 94 |
+
try:
|
| 95 |
+
stats = get_research_stats()
|
| 96 |
+
render_progress_metrics(stats)
|
| 97 |
+
render_quality_indicators(stats)
|
| 98 |
+
render_research_status(stats)
|
| 99 |
+
render_service_status()
|
| 100 |
+
except Exception as e:
|
| 101 |
+
st.error(f"Sidebar failed: {e}")
|
| 102 |
+
render_default_sidebar()
|
| 103 |
+
|
| 104 |
+
def render_regeneration_prompt():
|
| 105 |
+
"""Show prompt to regenerate content with new model"""
|
| 106 |
+
st.markdown("---")
|
| 107 |
+
st.warning("π **Model Changed!**")
|
| 108 |
+
|
| 109 |
+
previous_model = st.session_state.previous_model
|
| 110 |
+
new_model = st.session_state.pending_model_switch
|
| 111 |
+
|
| 112 |
+
st.write(f"You switched from **{previous_model.upper()}** to **{new_model.upper()}**.")
|
| 113 |
+
st.write("Would you like to regenerate the same content with the new model?")
|
| 114 |
+
|
| 115 |
+
col1, col2, col3 = st.columns([1, 1, 1])
|
| 116 |
+
|
| 117 |
+
with col1:
|
| 118 |
+
if st.button("β
Yes, Regenerate", use_container_width=True, key="confirm_regenerate"):
|
| 119 |
+
# Trigger regeneration with new model
|
| 120 |
+
st.session_state.selected_model = new_model
|
| 121 |
+
st.session_state.regenerate_with_new_model = True
|
| 122 |
+
st.session_state.showing_regeneration_prompt = False
|
| 123 |
+
st.session_state.pending_model_switch = None
|
| 124 |
+
st.session_state.previous_model = None
|
| 125 |
+
st.rerun()
|
| 126 |
+
|
| 127 |
+
with col2:
|
| 128 |
+
if st.button("β No, Keep Current", use_container_width=True, key="keep_current"):
|
| 129 |
+
# Revert to previous model and keep current content
|
| 130 |
+
st.session_state.selected_model = st.session_state.previous_model
|
| 131 |
+
st.session_state.showing_regeneration_prompt = False
|
| 132 |
+
st.session_state.pending_model_switch = None
|
| 133 |
+
st.session_state.previous_model = None
|
| 134 |
+
st.rerun()
|
| 135 |
+
|
| 136 |
+
with col3:
|
| 137 |
+
if st.button("π Go to Home", use_container_width=True, key="go_home"):
|
| 138 |
+
# Clear content and go to home
|
| 139 |
+
from components.session_manager import clear_session
|
| 140 |
+
clear_session()
|
| 141 |
+
st.session_state.showing_regeneration_prompt = False
|
| 142 |
+
st.session_state.pending_model_switch = None
|
| 143 |
+
st.session_state.previous_model = None
|
| 144 |
+
st.rerun()
|
| 145 |
+
|
| 146 |
+
def render_progress_metrics(stats):
|
| 147 |
+
col1, col2 = st.columns(2)
|
| 148 |
+
|
| 149 |
+
with col1:
|
| 150 |
+
st.metric("Total Feedback", stats.get("total_feedback", 0))
|
| 151 |
+
|
| 152 |
+
with col2:
|
| 153 |
+
st.metric("Content Generated", stats.get("total_content", 0))
|
| 154 |
+
|
| 155 |
+
if stats.get("total_feedback", 0) > 0:
|
| 156 |
+
render_progress_bar(stats)
|
| 157 |
+
|
| 158 |
+
def render_progress_bar(stats):
|
| 159 |
+
"""Render progress bar towards research goal"""
|
| 160 |
+
st.subheader("π Our Progress")
|
| 161 |
+
target_feedback = 100
|
| 162 |
+
total_feedback = stats.get("total_feedback", 0)
|
| 163 |
+
progress_percent = min((total_feedback / target_feedback) * 100, 100)
|
| 164 |
+
st.progress(progress_percent / 100)
|
| 165 |
+
st.caption(f"Goal: 100 feedback points β’ {total_feedback}/100")
|
| 166 |
+
|
| 167 |
+
if total_feedback >= target_feedback:
|
| 168 |
+
st.balloons()
|
| 169 |
+
st.success("π Amazing! We've reached our research goal!")
|
| 170 |
+
|
| 171 |
+
def render_quality_indicators(stats):
|
| 172 |
+
st.subheader("β¨ Model Quality Comparison")
|
| 173 |
+
|
| 174 |
+
# Safely get model scores with fallbacks
|
| 175 |
+
groq_scores = stats.get("groq_scores", {})
|
| 176 |
+
phi3_scores = stats.get("phi3_scores", {})
|
| 177 |
+
|
| 178 |
+
groq_clarity = groq_scores.get("clarity", 0)
|
| 179 |
+
groq_depth = groq_scores.get("depth", 0)
|
| 180 |
+
phi3_clarity = phi3_scores.get("clarity", 0)
|
| 181 |
+
phi3_depth = phi3_scores.get("depth", 0)
|
| 182 |
+
|
| 183 |
+
# Groq metrics
|
| 184 |
+
st.markdown("**π Groq (Training Data)**")
|
| 185 |
+
col1, col2 = st.columns(2)
|
| 186 |
+
with col1:
|
| 187 |
+
# Show delta if we have both scores
|
| 188 |
+
delta_clarity = None
|
| 189 |
+
if groq_clarity > 0 and phi3_clarity > 0:
|
| 190 |
+
delta_clarity = f"+{groq_clarity - phi3_clarity:.1f}"
|
| 191 |
+
st.metric("Avg Clarity", f"{groq_clarity}/5", delta=delta_clarity)
|
| 192 |
+
with col2:
|
| 193 |
+
delta_depth = None
|
| 194 |
+
if groq_depth > 0 and phi3_depth > 0:
|
| 195 |
+
delta_depth = f"+{groq_depth - phi3_depth:.1f}"
|
| 196 |
+
st.metric("Avg Depth", f"{groq_depth}/5", delta=delta_depth)
|
| 197 |
+
|
| 198 |
+
# Phi-3 metrics
|
| 199 |
+
st.markdown("**π§ͺ Phi-3 (Research Model)**")
|
| 200 |
+
col3, col4 = st.columns(2)
|
| 201 |
+
with col3:
|
| 202 |
+
delta_clarity_phi3 = None
|
| 203 |
+
if phi3_clarity > 0 and groq_clarity > 0:
|
| 204 |
+
delta_clarity_phi3 = f"{phi3_clarity - groq_clarity:.1f}"
|
| 205 |
+
st.metric("Avg Clarity", f"{phi3_clarity}/5", delta=delta_clarity_phi3)
|
| 206 |
+
with col4:
|
| 207 |
+
delta_depth_phi3 = None
|
| 208 |
+
if phi3_depth > 0 and groq_depth > 0:
|
| 209 |
+
delta_depth_phi3 = f"{phi3_depth - groq_depth:.1f}"
|
| 210 |
+
st.metric("Avg Depth", f"{phi3_depth}/5", delta=delta_depth_phi3)
|
| 211 |
+
|
| 212 |
+
# Show quality gap analysis
|
| 213 |
+
if groq_clarity > 0 and phi3_clarity > 0:
|
| 214 |
+
clarity_gap = groq_clarity - phi3_clarity
|
| 215 |
+
depth_gap = groq_depth - phi3_depth
|
| 216 |
+
|
| 217 |
+
if clarity_gap > 0 or depth_gap > 0:
|
| 218 |
+
st.caption(f"π Quality gap: Clarity +{clarity_gap:.1f}, Depth +{depth_gap:.1f}")
|
| 219 |
+
elif clarity_gap < 0 or depth_gap < 0:
|
| 220 |
+
st.caption(f"π Phi-3 leads: Clarity {abs(clarity_gap):.1f}, Depth {abs(depth_gap):.1f}")
|
| 221 |
+
else:
|
| 222 |
+
st.caption("βοΈ Models performing equally")
|
| 223 |
+
|
| 224 |
+
def render_research_status(stats):
|
| 225 |
+
st.subheader("π¬ Research Progress")
|
| 226 |
+
|
| 227 |
+
col1, col2, col3 = st.columns(3)
|
| 228 |
+
|
| 229 |
+
with col1:
|
| 230 |
+
st.metric("Groq Data", stats.get("groq_feedback_count", 0))
|
| 231 |
+
st.caption("For fine-tuning")
|
| 232 |
+
|
| 233 |
+
with col2:
|
| 234 |
+
st.metric("High-Quality Groq", stats.get("high_quality_groq", 0))
|
| 235 |
+
st.caption("Fine-tuning ready")
|
| 236 |
+
|
| 237 |
+
with col3:
|
| 238 |
+
st.metric("Phi-3 Data", stats.get("phi3_feedback_count", 0))
|
| 239 |
+
st.caption("For comparison")
|
| 240 |
+
|
| 241 |
+
# Fine-tuning readiness
|
| 242 |
+
target_examples = 50
|
| 243 |
+
high_quality_groq = stats.get("high_quality_groq", 0)
|
| 244 |
+
|
| 245 |
+
if high_quality_groq >= target_examples:
|
| 246 |
+
st.success("π Ready to fine-tune Phi-3 with Groq data!")
|
| 247 |
+
if st.button("π Export Fine-tuning Data", use_container_width=True, type="primary"):
|
| 248 |
+
from export_training_data_from_db import export_training_data_from_db
|
| 249 |
+
if export_training_data_from_db():
|
| 250 |
+
st.success("β
Groq data exported for Phi-3 fine-tuning!")
|
| 251 |
+
else:
|
| 252 |
+
st.error("Export failed")
|
| 253 |
+
else:
|
| 254 |
+
needed = target_examples - high_quality_groq
|
| 255 |
+
st.info(f"π Need {needed} more high-quality Groq examples")
|
| 256 |
+
progress = high_quality_groq / target_examples if target_examples > 0 else 0
|
| 257 |
+
st.progress(progress)
|
| 258 |
+
st.caption(f"Progress: {high_quality_groq}/{target_examples} examples")
|
| 259 |
+
|
| 260 |
+
def render_service_status():
|
| 261 |
+
st.markdown("---")
|
| 262 |
+
st.subheader("π Platform Status")
|
| 263 |
+
|
| 264 |
+
try:
|
| 265 |
+
status = model_manager.get_service_status()
|
| 266 |
+
|
| 267 |
+
# Create status columns
|
| 268 |
+
col1, col2 = st.columns(2)
|
| 269 |
+
|
| 270 |
+
with col1:
|
| 271 |
+
# Phi-3 Status
|
| 272 |
+
phi3_status = status["phi3"]
|
| 273 |
+
if phi3_status["server_healthy"] and phi3_status["model_available"]:
|
| 274 |
+
st.success("π§ͺ Phi-3 Mini")
|
| 275 |
+
st.caption("Research Model β’ Ready")
|
| 276 |
+
elif phi3_status["server_healthy"]:
|
| 277 |
+
st.warning("π§ͺ Phi-3 Mini")
|
| 278 |
+
st.caption("Research Model β’ Needs Setup")
|
| 279 |
+
else:
|
| 280 |
+
st.error("π§ͺ Phi-3 Mini")
|
| 281 |
+
st.caption("Research Model β’ Offline")
|
| 282 |
+
|
| 283 |
+
with col2:
|
| 284 |
+
# Groq Status
|
| 285 |
+
groq_status = status["groq"]
|
| 286 |
+
healthy_count = groq_status['healthy_providers']
|
| 287 |
+
total_providers = groq_status['total_providers']
|
| 288 |
+
|
| 289 |
+
if healthy_count == total_providers:
|
| 290 |
+
st.success("π Groq API")
|
| 291 |
+
st.caption("Training Data β’ Fully Operational")
|
| 292 |
+
elif healthy_count > 0:
|
| 293 |
+
st.warning("π Groq API")
|
| 294 |
+
st.caption(f"Training Data β’ {healthy_count}/{total_providers} providers")
|
| 295 |
+
else:
|
| 296 |
+
st.error("π Groq API")
|
| 297 |
+
st.caption("Training Data β’ Offline")
|
| 298 |
+
|
| 299 |
+
# Quick health indicator
|
| 300 |
+
if status["phi3"]["server_healthy"] and groq_status['healthy_providers'] > 0:
|
| 301 |
+
st.caption("π‘ All systems operational - research ready!")
|
| 302 |
+
else:
|
| 303 |
+
st.caption("β οΈ Some services limited - research may be affected")
|
| 304 |
+
|
| 305 |
+
except Exception as e:
|
| 306 |
+
st.error("β Status check failed")
|
| 307 |
+
st.caption("Research platform may have issues")
|
| 308 |
+
|
| 309 |
+
def render_default_sidebar():
|
| 310 |
+
st.info("π Start generating content to contribute to our research!")
|
| 311 |
+
st.caption("Your feedback on Groq content will train Phi-3 to become a better educational AI")
|
| 312 |
+
if st.button("π Refresh Progress", use_container_width=True, key="refresh_progress"):
|
| 313 |
+
st.rerun()
|