Upload 2 files
Browse files
stratagy/__pycache__/rsi_stratagy.cpython-38.pyc
ADDED
|
Binary file (3.82 kB). View file
|
|
|
stratagy/rsi_stratagy.py
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import yfinance as yf
|
| 2 |
+
import pandas as pd
|
| 3 |
+
|
| 4 |
+
def process_dataframe(df):
|
| 5 |
+
def get_rsi(close, lookback):
|
| 6 |
+
ret = close.diff()
|
| 7 |
+
up = []
|
| 8 |
+
down = []
|
| 9 |
+
for i in range(len(ret)):
|
| 10 |
+
if ret[i] < 0:
|
| 11 |
+
up.append(0)
|
| 12 |
+
down.append(ret[i])
|
| 13 |
+
else:
|
| 14 |
+
up.append(ret[i])
|
| 15 |
+
down.append(0)
|
| 16 |
+
up_series = pd.Series(up)
|
| 17 |
+
down_series = pd.Series(down).abs()
|
| 18 |
+
up_ewm = up_series.ewm(com=lookback - 1, adjust=False).mean()
|
| 19 |
+
down_ewm = down_series.ewm(com=lookback - 1, adjust=False).mean()
|
| 20 |
+
rs = up_ewm / down_ewm
|
| 21 |
+
rsi = 100 - (100 / (1 + rs))
|
| 22 |
+
rsi_df = pd.DataFrame(rsi).rename(columns={0: 'RSI'}).set_index(close.index)
|
| 23 |
+
rsi_df = rsi_df.dropna()
|
| 24 |
+
return rsi_df[3:]
|
| 25 |
+
|
| 26 |
+
df['RSI'] = get_rsi(df['Close'], 14)
|
| 27 |
+
df['SMA20'] = df['Close'].rolling(window=20).mean()
|
| 28 |
+
df.drop(['Adj Close'], axis=1, inplace=True)
|
| 29 |
+
df = df.dropna()
|
| 30 |
+
|
| 31 |
+
return df
|
| 32 |
+
|
| 33 |
+
def fin_data(ticker, startdate, enddate):
|
| 34 |
+
df=yf.download(ticker,start=startdate,end=enddate, progress=False)
|
| 35 |
+
df = process_dataframe(df)
|
| 36 |
+
df.reset_index(inplace=True)
|
| 37 |
+
df = df.dropna()
|
| 38 |
+
df.reset_index(drop=True, inplace=True)
|
| 39 |
+
df[['Open', 'High', 'Low', 'Close',"RSI"]] = df[['Open', 'High', 'Low', 'Close',"RSI"]].round(2)
|
| 40 |
+
df = df[200:]
|
| 41 |
+
df.reset_index(drop=True,inplace=True)
|
| 42 |
+
return df
|
| 43 |
+
|
| 44 |
+
def eqt(ticker, startdate, enddate, share_qty = 90):
|
| 45 |
+
df = fin_data(ticker, startdate, enddate)
|
| 46 |
+
entry = False
|
| 47 |
+
trading = False
|
| 48 |
+
shares_held = 0
|
| 49 |
+
buy_price = 0
|
| 50 |
+
target1 = False
|
| 51 |
+
target2 = False
|
| 52 |
+
target3 = False
|
| 53 |
+
tgt1 = 0
|
| 54 |
+
tgt2 = 0
|
| 55 |
+
tgt3 = 0
|
| 56 |
+
total_profit = 0
|
| 57 |
+
profits = []
|
| 58 |
+
stop_loss = 0
|
| 59 |
+
capital_list = []
|
| 60 |
+
start_date = []
|
| 61 |
+
end_date = []
|
| 62 |
+
|
| 63 |
+
for i in range(1, len(df)-1):
|
| 64 |
+
try:
|
| 65 |
+
if df.at[i, 'RSI'] > 60 and df.at[i - 1, 'RSI'] < 60 and df.at[i, 'High'] < df.at[i + 1, 'High'] and not entry and not trading:
|
| 66 |
+
buy_price = df.at[i, 'High']
|
| 67 |
+
stop_loss = df.at[i, 'Low']
|
| 68 |
+
start_date.append(df.at[i, 'Date'])
|
| 69 |
+
capital = buy_price * share_qty
|
| 70 |
+
capital_list.append(round(capital, 2))
|
| 71 |
+
shares_held = share_qty
|
| 72 |
+
entry = True
|
| 73 |
+
trading = True
|
| 74 |
+
|
| 75 |
+
if trading and not target1:
|
| 76 |
+
if (df.at[i + 1, 'High'] - buy_price) >= 0.02 * buy_price:
|
| 77 |
+
stop_loss = buy_price
|
| 78 |
+
target1 = True
|
| 79 |
+
tgt1 = 0.02 * buy_price * (share_qty / 3)
|
| 80 |
+
shares_held -= (share_qty / 3)
|
| 81 |
+
total_profit = tgt1
|
| 82 |
+
|
| 83 |
+
if trading and target1 and not target2:
|
| 84 |
+
if (df.at[i + 1, 'High'] - buy_price) >= 0.04 * buy_price:
|
| 85 |
+
target2 = True
|
| 86 |
+
tgt2 = 0.04 * buy_price * (share_qty / 3)
|
| 87 |
+
total_profit += tgt2
|
| 88 |
+
shares_held -= (share_qty / 3)
|
| 89 |
+
|
| 90 |
+
if trading and target2 and not target3:
|
| 91 |
+
if (df.at[i + 1, 'Open'] < df.at[i + 1, 'SMA20'] < df.at[i + 1, 'Close']) or (df.at[i + 1, 'Open'] > df.at[i + 1, 'SMA20'] > df.at[i + 1, 'Close']):
|
| 92 |
+
stop_loss = df.at[i + 1, 'Low']
|
| 93 |
+
if df.at[i + 2, 'Low'] < stop_loss:
|
| 94 |
+
target3 = True
|
| 95 |
+
tgt3 = stop_loss * (share_qty / 3)
|
| 96 |
+
shares_held -= (share_qty / 3)
|
| 97 |
+
total_profit += tgt3
|
| 98 |
+
|
| 99 |
+
if (df.at[i + 1, 'Low'] < stop_loss and trading):
|
| 100 |
+
profit_loss = (shares_held * stop_loss) - (shares_held * buy_price)
|
| 101 |
+
total_profit += profit_loss
|
| 102 |
+
profits.append(total_profit)
|
| 103 |
+
end_date.append(df.at[i, 'Date'])
|
| 104 |
+
shares_held = 0
|
| 105 |
+
buy_price = 0
|
| 106 |
+
entry = False
|
| 107 |
+
trading = False
|
| 108 |
+
target1 = target2 = target3 = False
|
| 109 |
+
tgt1 = tgt2 = tgt3 = 0
|
| 110 |
+
total_profit = 0
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
except IndexError:
|
| 116 |
+
continue
|
| 117 |
+
|
| 118 |
+
print("\n")
|
| 119 |
+
print(f"Stock: {ticker} - From {df.at[1, 'Date']} to {df.at[len(df) - 1, 'Date']}")
|
| 120 |
+
print(f"Required capital Range equity per trade: {round(capital_list[0],2)} ₹ - {round(capital_list[-1],2)} ₹")
|
| 121 |
+
print("Duration Total Trading Profit:", round(sum(profits), 2),"₹")
|
| 122 |
+
if profits:
|
| 123 |
+
if len(start_date) > len(end_date):
|
| 124 |
+
rr = len(end_date)
|
| 125 |
+
df = pd.DataFrame({"Start" : start_date[:rr], "End": end_date, "profit" : profits, "Capital" : capital_list[:rr]})
|
| 126 |
+
df['percentage'] = (df['profit'] / df['Capital']) * 100
|
| 127 |
+
df['percentage'] = df['percentage'].apply(lambda x: f"{x:.2f}%" if x >= 0 else f"-{-x:.2f}%")
|
| 128 |
+
else:
|
| 129 |
+
df = pd.DataFrame({"Start" : start_date, "End": end_date, "profit" : profits, "Capital" : capital_list})
|
| 130 |
+
df['percentage'] = (df['profit'] / df['Capital']) * 100
|
| 131 |
+
df['percentage'] = df['percentage'].apply(lambda x: f"{x:.2f}%" if x >= 0 else f"-{-x:.2f}%")
|
| 132 |
+
return df
|
| 133 |
+
else:
|
| 134 |
+
return 0
|