Spaces:
Runtime error
Runtime error
kevin-yang
commited on
Commit
·
b1944b2
1
Parent(s):
cf3d4e2
initial commit
Browse files- NanumGothicCoding-Bold.ttf +0 -0
- NanumGothicCoding.ttf +0 -0
- __pycache__/bertviz.cpython-38.pyc +0 -0
- __pycache__/util.cpython-36.pyc +0 -0
- attention.py +97 -0
- bvz.py +10 -0
- requirements.txt +5 -0
- test_demp.py +38 -0
- util.py +384 -0
NanumGothicCoding-Bold.ttf
ADDED
|
Binary file (1.8 MB). View file
|
|
|
NanumGothicCoding.ttf
ADDED
|
Binary file (2.78 MB). View file
|
|
|
__pycache__/bertviz.cpython-38.pyc
ADDED
|
Binary file (533 Bytes). View file
|
|
|
__pycache__/util.cpython-36.pyc
ADDED
|
Binary file (6.01 kB). View file
|
|
|
attention.py
ADDED
|
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from torch.nn import functional as F
|
| 4 |
+
import seaborn
|
| 5 |
+
|
| 6 |
+
import matplotlib
|
| 7 |
+
import platform
|
| 8 |
+
|
| 9 |
+
if platform.system() == "Darwin":
|
| 10 |
+
print("MacOS")
|
| 11 |
+
matplotlib.use('Agg')
|
| 12 |
+
import matplotlib.pyplot as plt
|
| 13 |
+
import io
|
| 14 |
+
from PIL import Image
|
| 15 |
+
|
| 16 |
+
import matplotlib.font_manager as fm
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
import util
|
| 22 |
+
|
| 23 |
+
font_path = r'NanumGothicCoding.ttf'
|
| 24 |
+
fontprop = fm.FontProperties(fname=font_path, size=18)
|
| 25 |
+
|
| 26 |
+
plt.rcParams["font.family"] = 'NanumGothic'
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def visualize_attention(sent, attention_matrix, n_words=10):
|
| 30 |
+
def draw(data, x, y, ax):
|
| 31 |
+
seaborn.heatmap(data,
|
| 32 |
+
xticklabels=x, square=True, yticklabels=y, vmin=0.0, vmax=1.0,
|
| 33 |
+
cbar=False, ax=ax)
|
| 34 |
+
|
| 35 |
+
# make plt figure with 1x6 subplots
|
| 36 |
+
fig = plt.figure(figsize=(16, 8))
|
| 37 |
+
# fig.subplots_adjust(hspace=0.7, wspace=0.2)
|
| 38 |
+
for i, layer in enumerate(range(1, 12, 2)):
|
| 39 |
+
ax = fig.add_subplot(2, 3, i+1)
|
| 40 |
+
ax.set_title("Layer {}".format(layer))
|
| 41 |
+
draw(attention_matrix[layer], sent if layer > 6 else [], sent if layer in [1,7] else [], ax=ax)
|
| 42 |
+
|
| 43 |
+
fig.tight_layout()
|
| 44 |
+
plt.close()
|
| 45 |
+
|
| 46 |
+
return fig
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def predict(model_name, text):
|
| 51 |
+
|
| 52 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 53 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 54 |
+
config = AutoConfig.from_pretrained(model_name)
|
| 55 |
+
print(config.id2label)
|
| 56 |
+
|
| 57 |
+
tokenized_text = tokenizer([text], return_tensors='pt')
|
| 58 |
+
|
| 59 |
+
input_tokens = tokenizer.convert_ids_to_tokens(tokenized_text.input_ids[0])
|
| 60 |
+
print(input_tokens)
|
| 61 |
+
input_tokens = util.bytetokens_to_unicdode(input_tokens) if config.model_type in ['roberta', 'gpt', 'gpt2'] else input_tokens
|
| 62 |
+
|
| 63 |
+
model.eval()
|
| 64 |
+
output, attention = model(**tokenized_text, output_attentions=True, return_dict=False)
|
| 65 |
+
output = F.softmax(output, dim=-1)
|
| 66 |
+
result = {}
|
| 67 |
+
|
| 68 |
+
for idx, label in enumerate(output[0].detach().numpy()):
|
| 69 |
+
result[config.id2label[idx]] = float(label)
|
| 70 |
+
|
| 71 |
+
fig = visualize_attention(input_tokens, attention[0][0].detach().numpy())
|
| 72 |
+
return result, fig#.logits.detach()#.numpy()#, output.attentions.detach().numpy()
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
if __name__ == '__main__':
|
| 76 |
+
|
| 77 |
+
model_name = 'jason9693/SoongsilBERT-beep-base'
|
| 78 |
+
text = '읿딴걸 홍볿글 읿랉곭 쌑젩낄고 앉앟있냩'
|
| 79 |
+
# output = predict(model_name, text)
|
| 80 |
+
|
| 81 |
+
# print(output)
|
| 82 |
+
|
| 83 |
+
model_name_list = [
|
| 84 |
+
'jason9693/SoongsilBERT-beep-base'
|
| 85 |
+
]
|
| 86 |
+
|
| 87 |
+
#Create a gradio app with a button that calls predict()
|
| 88 |
+
app = gr.Interface(
|
| 89 |
+
fn=predict,
|
| 90 |
+
server_port=26899,
|
| 91 |
+
server_name='0.0.0.0',
|
| 92 |
+
inputs=[gr.inputs.Dropdown(model_name_list, label="Model Name"), 'text'], outputs=['label', 'plot'],
|
| 93 |
+
examples = [[model_name, text]],
|
| 94 |
+
title="한국어 혐오성 발화 분류기 (Korean Hate Speech Classifier)",
|
| 95 |
+
description="Korean Hate Speech Classifier with Several Pretrained LM\nCurrent Supported Model:\n1. SoongsilBERT"
|
| 96 |
+
)
|
| 97 |
+
app.launch(inline=False)
|
bvz.py
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer, AutoModel
|
| 2 |
+
from bertviz import model_view
|
| 3 |
+
|
| 4 |
+
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
| 5 |
+
model = AutoModel.from_pretrained("distilbert-base-uncased", output_attentions=True)
|
| 6 |
+
inputs = tokenizer.encode("The cat sat on the mat", return_tensors='pt')
|
| 7 |
+
outputs = model(inputs)
|
| 8 |
+
attention = outputs[-1] # Output includes attention weights when output_attentions=True
|
| 9 |
+
tokens = tokenizer.convert_ids_to_tokens(inputs[0])
|
| 10 |
+
model_view(attention, tokens)
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers==4.3.0
|
| 2 |
+
torch==1.6.0
|
| 3 |
+
matplotlib
|
| 4 |
+
seaborn
|
| 5 |
+
numpy
|
test_demp.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def stock_forecast(final_year, companies, noise, show_legend, point_style):
|
| 7 |
+
start_year = 2020
|
| 8 |
+
x = np.arange(start_year, final_year + 1)
|
| 9 |
+
year_count = x.shape[0]
|
| 10 |
+
plt_format = ({"cross": "X", "line": "-", "circle": "o--"})[point_style]
|
| 11 |
+
fig = plt.figure()
|
| 12 |
+
ax = fig.add_subplot(111)
|
| 13 |
+
for i, company in enumerate(companies):
|
| 14 |
+
series = np.arange(0, year_count, dtype=float)
|
| 15 |
+
series = series ** 2 * (i + 1)
|
| 16 |
+
series += np.random.rand(year_count) * noise
|
| 17 |
+
ax.plot(x, series, plt_format)
|
| 18 |
+
if show_legend:
|
| 19 |
+
plt.legend(companies)
|
| 20 |
+
plt.close()
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
return fig
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
iface = gr.Interface(
|
| 27 |
+
stock_forecast,
|
| 28 |
+
[
|
| 29 |
+
gr.inputs.Radio([2025, 2030, 2035, 2040], label="Project to:"),
|
| 30 |
+
gr.inputs.CheckboxGroup(["Google", "Microsoft", "Gradio"]),
|
| 31 |
+
gr.inputs.Slider(1, 100),
|
| 32 |
+
"checkbox",
|
| 33 |
+
gr.inputs.Dropdown(["cross", "line", "circle"], label="Style")],
|
| 34 |
+
gr.outputs.Image(plot=True, label="forecast"))
|
| 35 |
+
|
| 36 |
+
iface.test_launch()
|
| 37 |
+
if __name__ == "__main__":
|
| 38 |
+
iface.launch(inline=False)
|
util.py
ADDED
|
@@ -0,0 +1,384 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from functools import lru_cache
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
@lru_cache()
|
| 6 |
+
def bytes_to_unicode_dict():
|
| 7 |
+
"""
|
| 8 |
+
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
|
| 9 |
+
characters the bpe code barfs on.
|
| 10 |
+
|
| 11 |
+
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
|
| 12 |
+
if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
|
| 13 |
+
decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
|
| 14 |
+
tables between utf-8 bytes and unicode strings.
|
| 15 |
+
"""
|
| 16 |
+
bs = (
|
| 17 |
+
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
|
| 18 |
+
)
|
| 19 |
+
cs = bs[:]
|
| 20 |
+
n = 0
|
| 21 |
+
for b in range(2 ** 8):
|
| 22 |
+
if b not in bs:
|
| 23 |
+
bs.append(b)
|
| 24 |
+
cs.append(2 ** 8 + n)
|
| 25 |
+
n += 1
|
| 26 |
+
cs = [chr(n) for n in cs]
|
| 27 |
+
return dict(zip(cs, bs))
|
| 28 |
+
|
| 29 |
+
ORD_UNICODE_MAP = bytes_to_unicode_dict()
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
@lru_cache()
|
| 33 |
+
def byte_to_char(bytestr):
|
| 34 |
+
return bytearray([ORD_UNICODE_MAP[c] for c in bytestr]).decode("utf-8", errors="replace")
|
| 35 |
+
|
| 36 |
+
# @lru_cache()
|
| 37 |
+
def bytetokens_to_unicdode(byte_tokens: list):
|
| 38 |
+
return [byte_to_char(token) for token in byte_tokens]
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
if __name__ == '__main__':
|
| 42 |
+
|
| 43 |
+
tokens = ['<s>',
|
| 44 |
+
'ì¹´ì¹´ìĺ¤',
|
| 45 |
+
'ìĹĶ',
|
| 46 |
+
'íĦ°',
|
| 47 |
+
'íĶĦëĿ¼ìĿ´',
|
| 48 |
+
'ì¦Ī',
|
| 49 |
+
'(',
|
| 50 |
+
'ëĮĢíijľ',
|
| 51 |
+
'Ġë°±',
|
| 52 |
+
'ìĥģ',
|
| 53 |
+
'ìĹ½',
|
| 54 |
+
')',
|
| 55 |
+
'ê°Ģ',
|
| 56 |
+
'Ġìĺ¬íķ´',
|
| 57 |
+
'Ġ8',
|
| 58 |
+
'ìĽĶ',
|
| 59 |
+
'Ġ기ì¤Ģ',
|
| 60 |
+
'Ġëĭ¤ìĪĺ',
|
| 61 |
+
'Ġê¶Į',
|
| 62 |
+
'ìľĦ',
|
| 63 |
+
'ĠìŀĪëĬĶ',
|
| 64 |
+
'Ġê¸Ģë¡ľë²Į',
|
| 65 |
+
'ĠíķĻ',
|
| 66 |
+
'íļĮìĹIJìĦľ',
|
| 67 |
+
'Ġì´Ŀ',
|
| 68 |
+
'Ġ16',
|
| 69 |
+
'ê±´',
|
| 70 |
+
'ìĿĺ',
|
| 71 |
+
'ĠìĿ¸ê³µ',
|
| 72 |
+
'ì§Ģ',
|
| 73 |
+
'ëĬ¥',
|
| 74 |
+
'(',
|
| 75 |
+
'A',
|
| 76 |
+
'I',
|
| 77 |
+
')',
|
| 78 |
+
'Ġëħ¼ë¬¸',
|
| 79 |
+
'ìĿĦ',
|
| 80 |
+
'Ġëĵ±',
|
| 81 |
+
'ìŀ¬',
|
| 82 |
+
'íĸĪëĭ¤ê³ł',
|
| 83 |
+
'Ġ9',
|
| 84 |
+
'ìĿ¼',
|
| 85 |
+
'Ġë°ĿíĺĶ',
|
| 86 |
+
'ëĭ¤',
|
| 87 |
+
'.',
|
| 88 |
+
'Ġì§ĢëĤľíķ´',
|
| 89 |
+
'Ġëĵ±',
|
| 90 |
+
'ìŀ¬',
|
| 91 |
+
'íķľ',
|
| 92 |
+
'Ġ13',
|
| 93 |
+
'ê±´ë',
|
| 94 |
+
'³´ëĭ¤',
|
| 95 |
+
'Ġ3',
|
| 96 |
+
'ê±´',
|
| 97 |
+
'Ġë§İìĿĢ',
|
| 98 |
+
'Ġëħ¼ë¬¸',
|
| 99 |
+
'ìĿ´',
|
| 100 |
+
'Ġë°ĺ',
|
| 101 |
+
'ëħĦ',
|
| 102 |
+
'ìŬ',
|
| 103 |
+
'Ġë§ĮìĹIJ',
|
| 104 |
+
'Ġì±Ħ',
|
| 105 |
+
'íĥĿ',
|
| 106 |
+
'ëIJIJëĭ¤',
|
| 107 |
+
'.',
|
| 108 |
+
'Ġì¹´ì¹´ìĺ¤',
|
| 109 |
+
'ìĹĶ',
|
| 110 |
+
'íĦ°',
|
| 111 |
+
'íĶĦëĿ¼ìĿ´',
|
| 112 |
+
'ì¦Ī',
|
| 113 |
+
'(',
|
| 114 |
+
'ìĿ´',
|
| 115 |
+
'íķĺ',
|
| 116 |
+
'Ġì¹´ì¹´ìĺ¤',
|
| 117 |
+
'ìĹĶ',
|
| 118 |
+
'íĦ°',
|
| 119 |
+
')',
|
| 120 |
+
'ëĬĶ',
|
| 121 |
+
'ĠA',
|
| 122 |
+
'I',
|
| 123 |
+
'ĠìĹ°êµ¬',
|
| 124 |
+
'ĠìĦ±',
|
| 125 |
+
'과를',
|
| 126 |
+
'ĠìĿ´',
|
| 127 |
+
'ìĸ´ê°Ģ',
|
| 128 |
+
'기',
|
| 129 |
+
'ĠìľĦíķ´',
|
| 130 |
+
'ĠìĿ¸ìŀ¬',
|
| 131 |
+
'ĠíĻķë³´',
|
| 132 |
+
'ìĹIJ',
|
| 133 |
+
'ĠìĨį',
|
| 134 |
+
'ëıĦ를',
|
| 135 |
+
'ĠëĨĴìĿ´',
|
| 136 |
+
'ê²łëĭ¤ëĬĶ',
|
| 137 |
+
'Ġë°©',
|
| 138 |
+
'침',
|
| 139 |
+
'ìĿ´ëĭ¤',
|
| 140 |
+
'.',
|
| 141 |
+
'Ċ',
|
| 142 |
+
'Ċ',
|
| 143 |
+
'ì¹´ì¹´ìĺ¤',
|
| 144 |
+
'ìĹĶ',
|
| 145 |
+
'íĦ°',
|
| 146 |
+
'ëĬĶ',
|
| 147 |
+
'Ġ8',
|
| 148 |
+
'ìĽĶ',
|
| 149 |
+
'ĠìŀIJìŰ',
|
| 150 |
+
'ìĸ´',
|
| 151 |
+
'ì²ĺ리',
|
| 152 |
+
'Ġë¶Ħìķ¼',
|
| 153 |
+
'ìĿĺ',
|
| 154 |
+
'Ġê¸Ģë¡ľë²Į',
|
| 155 |
+
'Ġíĥij',
|
| 156 |
+
'ĠíķĻ',
|
| 157 |
+
'íļĮ',
|
| 158 |
+
'ìĿ¸',
|
| 159 |
+
"Ġ'",
|
| 160 |
+
'A',
|
| 161 |
+
'C',
|
| 162 |
+
'L',
|
| 163 |
+
'-',
|
| 164 |
+
'I',
|
| 165 |
+
'J',
|
| 166 |
+
'C',
|
| 167 |
+
'N',
|
| 168 |
+
'L',
|
| 169 |
+
'P',
|
| 170 |
+
"'",
|
| 171 |
+
'ìĹIJ',
|
| 172 |
+
'Ġëħ¼ë¬¸',
|
| 173 |
+
'ìĿĦ',
|
| 174 |
+
'Ġë°ľíijľ',
|
| 175 |
+
'íķľ',
|
| 176 |
+
'ĠìĤ¬ë¡Ģ',
|
| 177 |
+
'ê¹Įì§Ģ',
|
| 178 |
+
'Ġíķ©',
|
| 179 |
+
'íķ´',
|
| 180 |
+
'Ġìĺ¬íķ´',
|
| 181 |
+
'Ġì´Ŀ',
|
| 182 |
+
'Ġ16',
|
| 183 |
+
'ê±´',
|
| 184 |
+
'ìĿĺ',
|
| 185 |
+
'ĠA',
|
| 186 |
+
'I',
|
| 187 |
+
'Ġëħ¼ë¬¸',
|
| 188 |
+
'ìĿĦ',
|
| 189 |
+
'Ġëĵ±',
|
| 190 |
+
'ìŀ¬',
|
| 191 |
+
'íĸĪëĭ¤ê³ł',
|
| 192 |
+
'Ġë°ĿíĺĶ',
|
| 193 |
+
'ëĭ¤',
|
| 194 |
+
'.',
|
| 195 |
+
'ĠìĿ´',
|
| 196 |
+
'Ġëħ¼ë¬¸',
|
| 197 |
+
'ìĿĢ',
|
| 198 |
+
'ĠìĿ¸ëıĦ',
|
| 199 |
+
'ë©Ķ',
|
| 200 |
+
'ìĿ¸',
|
| 201 |
+
'(',
|
| 202 |
+
'in',
|
| 203 |
+
'-',
|
| 204 |
+
'd',
|
| 205 |
+
'om',
|
| 206 |
+
'a',
|
| 207 |
+
'in',
|
| 208 |
+
')',
|
| 209 |
+
'Ġìĥĺ',
|
| 210 |
+
'íĶĮ',
|
| 211 |
+
'ìĿĦ',
|
| 212 |
+
'ĠìĤ¬ìļ©',
|
| 213 |
+
'íķ´',
|
| 214 |
+
'ĠìŀIJìŰ',
|
| 215 |
+
'ìĸ´',
|
| 216 |
+
'Ġ공격',
|
| 217 |
+
'Ġë°©ìĭĿìľ¼ë¡ľ',
|
| 218 |
+
'ĠìķĦìĽĥ',
|
| 219 |
+
'ìĺ¤',
|
| 220 |
+
'ë¸Į',
|
| 221 |
+
'ëıĦ',
|
| 222 |
+
'ë©Ķ',
|
| 223 |
+
'ìĿ¸',
|
| 224 |
+
'(',
|
| 225 |
+
'out',
|
| 226 |
+
'-',
|
| 227 |
+
'of',
|
| 228 |
+
'-',
|
| 229 |
+
'd',
|
| 230 |
+
'om',
|
| 231 |
+
'a',
|
| 232 |
+
'in',
|
| 233 |
+
')',
|
| 234 |
+
'Ġìĥĺ',
|
| 235 |
+
'íĶĮ',
|
| 236 |
+
'ìĿĦ',
|
| 237 |
+
'ĠìŀIJëıĻ',
|
| 238 |
+
'ìľ¼ë¡ľ',
|
| 239 |
+
'ĠìĥĿ',
|
| 240 |
+
'ìĦ±',
|
| 241 |
+
',',
|
| 242 |
+
'Ġë¶Ħ',
|
| 243 |
+
'ë¥ĺ',
|
| 244 |
+
'Ġ모ëį¸',
|
| 245 |
+
'ìĿĺ',
|
| 246 |
+
'Ġê°IJ',
|
| 247 |
+
'ì§Ģ',
|
| 248 |
+
'ĠëĬ¥ëł¥ìĿĦ',
|
| 249 |
+
'Ġíĸ¥',
|
| 250 |
+
'ìĥģ',
|
| 251 |
+
'ìĭľíĤ¤ëĬĶ',
|
| 252 |
+
'ĠëĤ´ìļ©',
|
| 253 |
+
'ìĿĺ',
|
| 254 |
+
'Ġëħ¼ë¬¸',
|
| 255 |
+
'ìĿ´ëĭ¤',
|
| 256 |
+
'.',
|
| 257 |
+
'Ċ',
|
| 258 |
+
'Ċ',
|
| 259 |
+
'7',
|
| 260 |
+
'ìĽĶ',
|
| 261 |
+
'ìĹIJëĬĶ',
|
| 262 |
+
'Ġ머',
|
| 263 |
+
'ìĭł',
|
| 264 |
+
'룬',
|
| 265 |
+
'ëĭĿ',
|
| 266 |
+
'ĠíķĻ',
|
| 267 |
+
'íļĮ',
|
| 268 |
+
"Ġ'",
|
| 269 |
+
'I',
|
| 270 |
+
'C',
|
| 271 |
+
'M',
|
| 272 |
+
'L',
|
| 273 |
+
"'",
|
| 274 |
+
'ìĹIJ',
|
| 275 |
+
'Ġíļ¨ìľ¨',
|
| 276 |
+
'ìłģìĿ¸',
|
| 277 |
+
'Ġê³ł',
|
| 278 |
+
'íĴĪ',
|
| 279 |
+
'ì§Ī',
|
| 280 |
+
'ĠìĿĮ',
|
| 281 |
+
'ìĦ±',
|
| 282 |
+
'íķ©',
|
| 283 |
+
'ìĦ±ìĿ´',
|
| 284 |
+
'Ġê°ĢëĬ¥íķľ',
|
| 285 |
+
"Ġ'",
|
| 286 |
+
'ìĹĶ',
|
| 287 |
+
'ëĵľ',
|
| 288 |
+
'Ġíά',
|
| 289 |
+
'ĠìĹĶ',
|
| 290 |
+
'ëĵľ',
|
| 291 |
+
'(',
|
| 292 |
+
'en',
|
| 293 |
+
'd',
|
| 294 |
+
'-',
|
| 295 |
+
't',
|
| 296 |
+
'o',
|
| 297 |
+
'-',
|
| 298 |
+
'en',
|
| 299 |
+
'd',
|
| 300 |
+
')',
|
| 301 |
+
"'",
|
| 302 |
+
'Ġ모ëį¸',
|
| 303 |
+
'ìĿĦ',
|
| 304 |
+
'ĠìłľìķĪ',
|
| 305 |
+
'íķĺëĬĶ',
|
| 306 |
+
'Ġëħ¼ë¬¸',
|
| 307 |
+
'ìĿĦ',
|
| 308 |
+
'Ġë°ľíijľ',
|
| 309 |
+
'íĸĪëĭ¤',
|
| 310 |
+
'.',
|
| 311 |
+
'Ġ6',
|
| 312 |
+
'ìĽĶ',
|
| 313 |
+
'ìĹIJëĬĶ',
|
| 314 |
+
'ĠìĿĮ',
|
| 315 |
+
'íĸ¥',
|
| 316 |
+
'·',
|
| 317 |
+
'ìĿĮ',
|
| 318 |
+
'ìĦ±',
|
| 319 |
+
'Ġìĭł',
|
| 320 |
+
'íĺ¸',
|
| 321 |
+
'ì²ĺ리',
|
| 322 |
+
'Ġë¶Ħìķ¼',
|
| 323 |
+
'ĠíķĻ',
|
| 324 |
+
'ìĪł',
|
| 325 |
+
'ëĮĢíļĮ',
|
| 326 |
+
"Ġ'",
|
| 327 |
+
'I',
|
| 328 |
+
'C',
|
| 329 |
+
'A',
|
| 330 |
+
'S',
|
| 331 |
+
'S',
|
| 332 |
+
'P',
|
| 333 |
+
"'",
|
| 334 |
+
'ìĹIJ',
|
| 335 |
+
'ĠëĮĢ',
|
| 336 |
+
'ê·ľëª¨',
|
| 337 |
+
'Ġíħ',
|
| 338 |
+
'į',
|
| 339 |
+
'ìĬ¤íĬ¸',
|
| 340 |
+
'Ġì½Ķ',
|
| 341 |
+
'íį¼ìĬ¤',
|
| 342 |
+
'(',
|
| 343 |
+
'ìĸ¸',
|
| 344 |
+
'ìĸ´',
|
| 345 |
+
'ĠìŰ',
|
| 346 |
+
'구를',
|
| 347 |
+
'ĠìľĦíķ´',
|
| 348 |
+
'Ġíħ',
|
| 349 |
+
'į',
|
| 350 |
+
'ìĬ¤íĬ¸ë¥¼',
|
| 351 |
+
'Ġì»´íĵ¨íĦ°',
|
| 352 |
+
'ê°Ģ',
|
| 353 |
+
'ĠìĿ½ìĿĦ',
|
| 354 |
+
'ĠìĪĺ',
|
| 355 |
+
'ĠìŀĪëĬĶ',
|
| 356 |
+
'Ġíĺķíĥľë¡ľ',
|
| 357 |
+
'Ġ모ìķĦ',
|
| 358 |
+
'ĠëĨĵìĿĢ',
|
| 359 |
+
'Ġìĸ¸ìĸ´',
|
| 360 |
+
'ĠìŀIJë£Į',
|
| 361 |
+
')',
|
| 362 |
+
'Ġìłķë³´',
|
| 363 |
+
'ĠíķĻìĬµ',
|
| 364 |
+
'ìĹIJ',
|
| 365 |
+
'ĠëĮĢíķľ',
|
| 366 |
+
'Ġëħ¼ë¬¸',
|
| 367 |
+
'Ġ1',
|
| 368 |
+
'ê±´ìĿĦ',
|
| 369 |
+
'Ġìĭ¤',
|
| 370 |
+
'ìĹĪëĭ¤',
|
| 371 |
+
'.',
|
| 372 |
+
'Ċ',
|
| 373 |
+
'</s>']
|
| 374 |
+
|
| 375 |
+
import time
|
| 376 |
+
|
| 377 |
+
start = time.time()
|
| 378 |
+
for i in range(1000):
|
| 379 |
+
result = bytetokens_to_unicdode(tokens)
|
| 380 |
+
end = time.time()
|
| 381 |
+
|
| 382 |
+
print(result)
|
| 383 |
+
|
| 384 |
+
print(f'time: {end-start}')
|