import gradio as gr from matplotlib import gridspec import matplotlib.pyplot as plt import numpy as np from PIL import Image import torch from transformers import SegformerFeatureExtractor, AutoModelForSemanticSegmentation feature_extractor = SegformerFeatureExtractor.from_pretrained( "mattmdjaga/segformer_b2_clothes" ) model = AutoModelForSemanticSegmentation.from_pretrained( "mattmdjaga/segformer_b2_clothes" ) def ade_palette(): """ADE20K palette that maps each class to RGB values.""" return [ [120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50], [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7], [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 5, 153], [6, 51, 255], [255, 153, 5] ] labels_list = [] with open("./labels.txt", "r", encoding="utf-8") as fp: for line in fp: labels_list.append(line.rstrip("\n")) colormap = np.asarray(ade_palette(), dtype=np.uint8) def label_to_color_image(label): if label.ndim != 2: raise ValueError("Expect 2-D input label") if np.max(label) >= len(colormap): raise ValueError("label value too large.") return colormap[label] def draw_plot(pred_img, seg_np): fig = plt.figure(figsize=(20, 15)) grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1]) plt.subplot(grid_spec[0]) plt.imshow(pred_img) plt.axis('off') LABEL_NAMES = np.asarray(labels_list) FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1) FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP) unique_labels = np.unique(seg_np.astype("uint8")) ax = plt.subplot(grid_spec[1]) plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest") ax.yaxis.tick_right() plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels]) plt.xticks([], []) ax.tick_params(width=0.0, labelsize=25) return fig def run_inference(input_img): # input: numpy array from gradio -> PIL img = Image.fromarray(input_img.astype(np.uint8)) if isinstance(input_img, np.ndarray) else input_img if img.mode != "RGB": img = img.convert("RGB") inputs = feature_extractor(images=img, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits # (1, C, h/4, w/4) # resize to original upsampled = torch.nn.functional.interpolate( logits, size=img.size[::-1], mode="bilinear", align_corners=False ) seg = upsampled.argmax(dim=1)[0].cpu().numpy().astype(np.uint8) # (H,W) # colorize & overlay color_seg = colormap[seg] # (H,W,3) pred_img = (np.array(img) * 0.5 + color_seg * 0.5).astype(np.uint8) fig = draw_plot(pred_img, seg) return fig demo = gr.Interface( fn=run_inference, inputs=gr.Image(type="numpy", label="Input Image"), outputs=gr.Plot(label="Overlay + Legend"), examples=[ "person-1.jpg", "person-2.jpg", "person-3.jpg", "person-4.jpg", "person-5.jpg" ], flagging_mode="never", cache_examples=False, ) if __name__ == "__main__": demo.launch()