#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Pre-embed Clinical Trials Script This script pre-processes and embeds a clinical trial database, saving the results to disk for faster loading in the main application. Usage: python preembed_trials.py --trials trials.csv --embedder path/to/embedder --output trial_embeddings python preembed_trials.py --trials /data1/ken/meta/2024/v17b/trial_space_lineitems.csv --embedder /ksg/kehl_mm_data/meta/2024/v17/v17_models/reranker_round2.model --output trial_embeddings --device cuda:2 This will create: - trial_embeddings_data.pkl: Trial dataframe - trial_embeddings_vectors.npy: Embedding vectors - trial_embeddings_metadata.json: Metadata about the embedding process """ import argparse import pandas as pd import numpy as np import torch import json import re from pathlib import Path from datetime import datetime from typing import Tuple from sentence_transformers import SentenceTransformer from transformers import AutoTokenizer def truncate_text(text: str, tokenizer, max_tokens: int = 1500) -> str: """Truncate text to a maximum number of tokens.""" return tokenizer.decode( tokenizer.encode(text, add_special_tokens=True, truncation=True, max_length=max_tokens), skip_special_tokens=True ) def load_trials(file_path: str) -> pd.DataFrame: """Load trials from CSV or Excel file.""" print(f"\n{'='*70}") print(f"Loading trial database from: {file_path}") print(f"{'='*70}") if file_path.endswith('.csv'): df = pd.read_csv(file_path) elif file_path.endswith(('.xlsx', '.xls')): df = pd.read_excel(file_path) else: raise ValueError("Unsupported file format. Use CSV or Excel.") # Check required columns required_cols = ['nct_id', 'this_space', 'trial_text', 'trial_boilerplate_text'] missing = [col for col in required_cols if col not in df.columns] if missing: raise ValueError(f"Missing required columns: {', '.join(missing)}") print(f"✓ Loaded {len(df)} trials") print(f" Columns: {', '.join(df.columns.tolist())}") # Clean data original_count = len(df) df = df[~df['this_space'].isnull()].copy() df['trial_boilerplate_text'] = df['trial_boilerplate_text'].fillna('') if len(df) < original_count: print(f" ⚠ Removed {original_count - len(df)} trials with missing 'this_space'") return df def embed_trials(df: pd.DataFrame, embedder_path: str, device: str = None) -> Tuple[np.ndarray, str]: """Embed trials using the specified embedder model.""" print(f"\n{'='*70}") print(f"Loading embedder model: {embedder_path}") print(f"{'='*70}") if device is None: device = "cuda" if torch.cuda.is_available() else "cpu" print(f"Device: {device}") # Load embedder embedder_model = SentenceTransformer(embedder_path, device=device, trust_remote_code=True) embedder_tokenizer = AutoTokenizer.from_pretrained(embedder_path, trust_remote_code=True) print(f"✓ Embedder loaded") # Set the instruction prompt try: embedder_model.prompts['query'] = ( "Instruct: Given a cancer patient summary, retrieve clinical trial options " "that are reasonable for that patient; or, given a clinical trial option, " "retrieve cancer patients who are reasonable candidates for that trial." ) except: pass try: embedder_model.max_seq_length = 1500 except: pass print(f"\n{'='*70}") print(f"Embedding {len(df)} trials") print(f"{'='*70}") # Prepare texts for embedding df['this_space_trunc'] = df['this_space'].apply( lambda x: truncate_text(str(x), embedder_tokenizer, max_tokens=1500) ) # Add instruction prefix prefix = ( "Instruct: Given a cancer patient summary, retrieve clinical trial options " "that are reasonable for that patient; or, given a clinical trial option, " "retrieve cancer patients who are reasonable candidates for that trial. " ) texts_to_embed = [prefix + txt for txt in df['this_space_trunc'].tolist()] print(f" Text length stats:") print(f" Mean: {np.mean([len(t) for t in texts_to_embed]):.0f} chars") print(f" Max: {max([len(t) for t in texts_to_embed])} chars") # Embed with progress bar with torch.no_grad(): embeddings = embedder_model.encode( texts_to_embed, batch_size=64, convert_to_tensor=True, normalize_embeddings=True, show_progress_bar=True, prompt='query' ) embeddings_np = embeddings.cpu().numpy() print(f"✓ Embedding complete") print(f" Shape: {embeddings_np.shape}") print(f" Dtype: {embeddings_np.dtype}") return embeddings_np, embedder_path def save_embeddings(df: pd.DataFrame, embeddings: np.ndarray, output_prefix: str, embedder_path: str): """Save trial data, embeddings, and metadata to disk.""" print(f"\n{'='*70}") print(f"Saving to: {output_prefix}_*") print(f"{'='*70}") output_path = Path(output_prefix).parent output_path.mkdir(parents=True, exist_ok=True) # Save dataframe df_file = f"{output_prefix}_data.pkl" df.to_pickle(df_file) print(f"✓ Saved trial dataframe: {df_file}") print(f" Size: {Path(df_file).stat().st_size / 1024 / 1024:.2f} MB") # Save embeddings embeddings_file = f"{output_prefix}_vectors.npy" np.save(embeddings_file, embeddings) print(f"✓ Saved embeddings: {embeddings_file}") print(f" Size: {Path(embeddings_file).stat().st_size / 1024 / 1024:.2f} MB") # Save metadata metadata = { "created_at": datetime.now().isoformat(), "embedder_model": embedder_path, "num_trials": len(df), "embedding_dim": embeddings.shape[1], "nct_ids": df['nct_id'].tolist()[:10] + ["..."] if len(df) > 10 else df['nct_id'].tolist(), "embedding_dtype": str(embeddings.dtype), "normalized": True } metadata_file = f"{output_prefix}_metadata.json" with open(metadata_file, 'w') as f: json.dump(metadata, f, indent=2) print(f"✓ Saved metadata: {metadata_file}") print(f"\n{'='*70}") print(f"PRE-EMBEDDING COMPLETE") print(f"{'='*70}") print(f"\nTo use these pre-embedded trials in your app:") print(f"1. Update config.py with:") print(f" PREEMBEDDED_TRIALS = '{output_prefix}'") print(f"2. Restart the application") print(f"\nThe app will automatically load these embeddings on startup!") def main(): parser = argparse.ArgumentParser( description="Pre-embed clinical trials for faster loading", formatter_class=argparse.RawDescriptionHelpFormatter, epilog=""" Examples: python preembed_trials.py --trials data/trials.csv --embedder models/embedder --output embeddings/trial_embeddings python preembed_trials.py --trials trials.xlsx --embedder Qwen/Qwen3-Embedding-0.6B --output trial_embeddings --device cuda """ ) parser.add_argument( '--trials', type=str, required=True, help='Path to trial database (CSV or Excel)' ) parser.add_argument( '--embedder', type=str, required=True, help='Path to embedder model or HuggingFace model name' ) parser.add_argument( '--output', type=str, required=True, help='Output prefix for saved files (e.g., "trial_embeddings" will create trial_embeddings_data.pkl, etc.)' ) parser.add_argument( '--device', type=str, default=None, #choices=['cuda', 'cpu'], help='Device to use for embedding (default: auto-detect)' ) args = parser.parse_args() print(f"\n{'='*70}") print(f"CLINICAL TRIAL PRE-EMBEDDING SCRIPT") print(f"{'='*70}") print(f"Trial Database: {args.trials}") print(f"Embedder Model: {args.embedder}") print(f"Output Prefix: {args.output}") print(f"{'='*70}\n") try: # Load trials df = load_trials(args.trials) # Embed trials embeddings, embedder_path = embed_trials(df, args.embedder, args.device) # Save everything save_embeddings(df, embeddings, args.output, embedder_path) print(f"\n✓ SUCCESS!") except Exception as e: print(f"\n✗ ERROR: {str(e)}") import traceback traceback.print_exc() return 1 return 0 if __name__ == "__main__": exit(main())