Spaces:
Sleeping
Sleeping
ACMCMC
commited on
Commit
·
27d40b9
1
Parent(s):
7833461
UI Changes
Browse files- app.py +72 -24
- database.ipynb +83 -2
- utils.py +7 -11
app.py
CHANGED
|
@@ -3,58 +3,106 @@ from streamlit_agraph import agraph, Node, Edge, Config
|
|
| 3 |
import os
|
| 4 |
from sqlalchemy import create_engine, text
|
| 5 |
import pandas as pd
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
import json
|
| 8 |
import numpy as np
|
| 9 |
from sentence_transformers import SentenceTransformer
|
| 10 |
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
| 17 |
CONNECTION_STRING = f"iris://{username}:{password}@{hostname}:{port}/{namespace}"
|
| 18 |
engine = create_engine(CONNECTION_STRING)
|
| 19 |
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
# 1. Embed the textual description that the user entered using the model
|
| 22 |
# 2. Get 5 diseases with the highest cosine silimarity from the DB
|
| 23 |
encoder = SentenceTransformer("allenai-specter")
|
| 24 |
-
diseases_related_to_the_user_text = get_diseases_related_to_a_textual_description(
|
| 25 |
-
|
|
|
|
|
|
|
| 26 |
# st.text(disease_label)
|
| 27 |
# 3. Get the similarities of the embeddings of those diseases (cosine similarity of the embeddings of the nodes of such diseases)
|
| 28 |
-
diseases_uris = [disease[
|
| 29 |
get_similarities_among_diseases_uris(diseases_uris)
|
| 30 |
print(diseases_related_to_the_user_text)
|
| 31 |
# 4. Potentially filter out the diseases that are not similar enough (e.g. similarity < 0.8)
|
| 32 |
# 5. Augment the set of diseases: add new diseases that are similar to the ones that are already in the set, until we get 10-15 diseases
|
|
|
|
|
|
|
| 33 |
# 6. Query the embeddings of the diseases related to each clinical trial (also in the DB), to get the most similar clinical trials to our set of diseases
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
# 8. Use an LLM to extract numerical data from the clinical trials (e.g. number of patients, number of deaths, etc.). Get summary statistics out of that.
|
| 36 |
# 9. Show the results to the user: graph of the diseases chosen, summary of the clinical trials, summary statistics of the clinical trials, and list of the details of the clinical trials considered
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
# TODO: also when user clicks enter
|
| 46 |
|
| 47 |
-
|
| 48 |
chart_data = pd.DataFrame(
|
| 49 |
np.random.randn(20, 3), columns=["a", "b", "c"]
|
| 50 |
) # TODO remove
|
| 51 |
-
|
| 52 |
|
| 53 |
-
|
| 54 |
disease_overview = ":red[lorem ipsum]" # TODO
|
| 55 |
-
|
| 56 |
|
| 57 |
-
|
| 58 |
trials = []
|
| 59 |
# TODO replace mock data
|
| 60 |
with open("mock_trial.json") as f:
|
|
|
|
| 3 |
import os
|
| 4 |
from sqlalchemy import create_engine, text
|
| 5 |
import pandas as pd
|
| 6 |
+
import time
|
| 7 |
+
from utils import (
|
| 8 |
+
get_all_diseases_name,
|
| 9 |
+
get_most_similar_diseases_from_uri,
|
| 10 |
+
get_uri_from_name,
|
| 11 |
+
get_diseases_related_to_a_textual_description,
|
| 12 |
+
get_similarities_among_diseases_uris,
|
| 13 |
+
augment_the_set_of_diseaces,
|
| 14 |
+
get_clinical_trials_related_to_diseases,
|
| 15 |
+
get_clinical_records_by_ids
|
| 16 |
+
)
|
| 17 |
import json
|
| 18 |
import numpy as np
|
| 19 |
from sentence_transformers import SentenceTransformer
|
| 20 |
|
| 21 |
|
| 22 |
+
begin = st.container()
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
username = "demo"
|
| 26 |
+
password = "demo"
|
| 27 |
+
hostname = os.getenv("IRIS_HOSTNAME", "localhost")
|
| 28 |
+
port = "1972"
|
| 29 |
+
namespace = "USER"
|
| 30 |
CONNECTION_STRING = f"iris://{username}:{password}@{hostname}:{port}/{namespace}"
|
| 31 |
engine = create_engine(CONNECTION_STRING)
|
| 32 |
|
| 33 |
+
begin.write("# Klìnic")
|
| 34 |
+
|
| 35 |
+
description_input = begin.text_input(
|
| 36 |
+
label="Enter the disease description 👇",
|
| 37 |
+
placeholder="A disease that causes memory loss and other cognitive impairments.",
|
| 38 |
+
)
|
| 39 |
+
if begin.button("Analyze 🔎"):
|
| 40 |
# 1. Embed the textual description that the user entered using the model
|
| 41 |
# 2. Get 5 diseases with the highest cosine silimarity from the DB
|
| 42 |
encoder = SentenceTransformer("allenai-specter")
|
| 43 |
+
diseases_related_to_the_user_text = get_diseases_related_to_a_textual_description(
|
| 44 |
+
description_input, encoder
|
| 45 |
+
)
|
| 46 |
+
# for disease_label in diseases_related_to_the_user_text:
|
| 47 |
# st.text(disease_label)
|
| 48 |
# 3. Get the similarities of the embeddings of those diseases (cosine similarity of the embeddings of the nodes of such diseases)
|
| 49 |
+
diseases_uris = [disease["uri"] for disease in diseases_related_to_the_user_text]
|
| 50 |
get_similarities_among_diseases_uris(diseases_uris)
|
| 51 |
print(diseases_related_to_the_user_text)
|
| 52 |
# 4. Potentially filter out the diseases that are not similar enough (e.g. similarity < 0.8)
|
| 53 |
# 5. Augment the set of diseases: add new diseases that are similar to the ones that are already in the set, until we get 10-15 diseases
|
| 54 |
+
augmented_set_of_diseases = augment_the_set_of_diseaces(diseases_uris)
|
| 55 |
+
print(augmented_set_of_diseases)
|
| 56 |
# 6. Query the embeddings of the diseases related to each clinical trial (also in the DB), to get the most similar clinical trials to our set of diseases
|
| 57 |
+
clinical_trials_related_to_the_diseases = get_clinical_trials_related_to_diseases(
|
| 58 |
+
augmented_set_of_diseases, encoder
|
| 59 |
+
)
|
| 60 |
+
print(f'clinical_trials_related_to_the_diseases: {clinical_trials_related_to_the_diseases}')
|
| 61 |
+
json_of_clinical_trials = get_clinical_records_by_ids(
|
| 62 |
+
[trial["nct_id"] for trial in clinical_trials_related_to_the_diseases]
|
| 63 |
+
)
|
| 64 |
+
print(f'json_of_clinical_trials: {json_of_clinical_trials}')
|
| 65 |
# 8. Use an LLM to extract numerical data from the clinical trials (e.g. number of patients, number of deaths, etc.). Get summary statistics out of that.
|
| 66 |
# 9. Show the results to the user: graph of the diseases chosen, summary of the clinical trials, summary statistics of the clinical trials, and list of the details of the clinical trials considered
|
| 67 |
+
graph_of_diseases = agraph(
|
| 68 |
+
nodes=[
|
| 69 |
+
Node(id="A", label="Node A", size=10),
|
| 70 |
+
Node(id="B", label="Node B", size=10),
|
| 71 |
+
Node(id="C", label="Node C", size=10),
|
| 72 |
+
Node(id="D", label="Node D", size=10),
|
| 73 |
+
Node(id="E", label="Node E", size=10),
|
| 74 |
+
Node(id="F", label="Node F", size=10),
|
| 75 |
+
Node(id="G", label="Node G", size=10),
|
| 76 |
+
Node(id="H", label="Node H", size=10),
|
| 77 |
+
Node(id="I", label="Node I", size=10),
|
| 78 |
+
Node(id="J", label="Node J", size=10),
|
| 79 |
+
],
|
| 80 |
+
edges=[
|
| 81 |
+
Edge(source="A", target="B"),
|
| 82 |
+
Edge(source="B", target="C"),
|
| 83 |
+
Edge(source="C", target="D"),
|
| 84 |
+
Edge(source="D", target="E"),
|
| 85 |
+
Edge(source="E", target="F"),
|
| 86 |
+
Edge(source="F", target="G"),
|
| 87 |
+
Edge(source="G", target="H"),
|
| 88 |
+
Edge(source="H", target="I"),
|
| 89 |
+
Edge(source="I", target="J"),
|
| 90 |
+
],
|
| 91 |
+
config=Config(height=500, width=500),
|
| 92 |
+
)
|
| 93 |
# TODO: also when user clicks enter
|
| 94 |
|
| 95 |
+
begin.write(":red[Here should be the graph]") # TODO remove
|
| 96 |
chart_data = pd.DataFrame(
|
| 97 |
np.random.randn(20, 3), columns=["a", "b", "c"]
|
| 98 |
) # TODO remove
|
| 99 |
+
begin.scatter_chart(chart_data) # TODO remove
|
| 100 |
|
| 101 |
+
begin.write("## Disease Overview")
|
| 102 |
disease_overview = ":red[lorem ipsum]" # TODO
|
| 103 |
+
begin.write(disease_overview)
|
| 104 |
|
| 105 |
+
begin.write("## Clinical Trials Details")
|
| 106 |
trials = []
|
| 107 |
# TODO replace mock data
|
| 108 |
with open("mock_trial.json") as f:
|
database.ipynb
CHANGED
|
@@ -288,9 +288,90 @@
|
|
| 288 |
},
|
| 289 |
{
|
| 290 |
"cell_type": "code",
|
| 291 |
-
"execution_count":
|
| 292 |
"metadata": {},
|
| 293 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 294 |
"source": [
|
| 295 |
"# Load knowledge graph\n",
|
| 296 |
"clinical_trials = pd.read_csv(\"clinical_trials_embeddings.csv\")\n",
|
|
|
|
| 288 |
},
|
| 289 |
{
|
| 290 |
"cell_type": "code",
|
| 291 |
+
"execution_count": 22,
|
| 292 |
"metadata": {},
|
| 293 |
+
"outputs": [
|
| 294 |
+
{
|
| 295 |
+
"data": {
|
| 296 |
+
"text/html": [
|
| 297 |
+
"<div>\n",
|
| 298 |
+
"<style scoped>\n",
|
| 299 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 300 |
+
" vertical-align: middle;\n",
|
| 301 |
+
" }\n",
|
| 302 |
+
"\n",
|
| 303 |
+
" .dataframe tbody tr th {\n",
|
| 304 |
+
" vertical-align: top;\n",
|
| 305 |
+
" }\n",
|
| 306 |
+
"\n",
|
| 307 |
+
" .dataframe thead th {\n",
|
| 308 |
+
" text-align: right;\n",
|
| 309 |
+
" }\n",
|
| 310 |
+
"</style>\n",
|
| 311 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 312 |
+
" <thead>\n",
|
| 313 |
+
" <tr style=\"text-align: right;\">\n",
|
| 314 |
+
" <th></th>\n",
|
| 315 |
+
" <th>desease_condition</th>\n",
|
| 316 |
+
" <th>embeddings</th>\n",
|
| 317 |
+
" <th>nct_id</th>\n",
|
| 318 |
+
" </tr>\n",
|
| 319 |
+
" </thead>\n",
|
| 320 |
+
" <tbody>\n",
|
| 321 |
+
" <tr>\n",
|
| 322 |
+
" <th>0</th>\n",
|
| 323 |
+
" <td>marijuana abuse, substance-related disorders, ...</td>\n",
|
| 324 |
+
" <td>-0.8323991298675537, 1.47855544090271, 0.00130...</td>\n",
|
| 325 |
+
" <td>NCT03055377</td>\n",
|
| 326 |
+
" </tr>\n",
|
| 327 |
+
" <tr>\n",
|
| 328 |
+
" <th>1</th>\n",
|
| 329 |
+
" <td>tuberculosis, latent tuberculosis, infections,...</td>\n",
|
| 330 |
+
" <td>-0.43443307280540466, 0.9625586271286011, -0.1...</td>\n",
|
| 331 |
+
" <td>NCT03042754</td>\n",
|
| 332 |
+
" </tr>\n",
|
| 333 |
+
" <tr>\n",
|
| 334 |
+
" <th>2</th>\n",
|
| 335 |
+
" <td>heart failure, heart diseases, cardiovascular ...</td>\n",
|
| 336 |
+
" <td>-0.5791705250740051, 0.13008448481559753, 0.13...</td>\n",
|
| 337 |
+
" <td>NCT03035123</td>\n",
|
| 338 |
+
" </tr>\n",
|
| 339 |
+
" <tr>\n",
|
| 340 |
+
" <th>3</th>\n",
|
| 341 |
+
" <td>lymphoma, neoplasms by histologic type, neopla...</td>\n",
|
| 342 |
+
" <td>-0.1608569175004959, 0.8489153981208801, -0.55...</td>\n",
|
| 343 |
+
" <td>NCT02272751</td>\n",
|
| 344 |
+
" </tr>\n",
|
| 345 |
+
" <tr>\n",
|
| 346 |
+
" <th>4</th>\n",
|
| 347 |
+
" <td>anemia, hematologic diseases</td>\n",
|
| 348 |
+
" <td>0.21379394829273224, 0.17073844373226166, -0.1...</td>\n",
|
| 349 |
+
" <td>NCT00931606</td>\n",
|
| 350 |
+
" </tr>\n",
|
| 351 |
+
" </tbody>\n",
|
| 352 |
+
"</table>\n",
|
| 353 |
+
"</div>"
|
| 354 |
+
],
|
| 355 |
+
"text/plain": [
|
| 356 |
+
" desease_condition \\\n",
|
| 357 |
+
"0 marijuana abuse, substance-related disorders, ... \n",
|
| 358 |
+
"1 tuberculosis, latent tuberculosis, infections,... \n",
|
| 359 |
+
"2 heart failure, heart diseases, cardiovascular ... \n",
|
| 360 |
+
"3 lymphoma, neoplasms by histologic type, neopla... \n",
|
| 361 |
+
"4 anemia, hematologic diseases \n",
|
| 362 |
+
"\n",
|
| 363 |
+
" embeddings nct_id \n",
|
| 364 |
+
"0 -0.8323991298675537, 1.47855544090271, 0.00130... NCT03055377 \n",
|
| 365 |
+
"1 -0.43443307280540466, 0.9625586271286011, -0.1... NCT03042754 \n",
|
| 366 |
+
"2 -0.5791705250740051, 0.13008448481559753, 0.13... NCT03035123 \n",
|
| 367 |
+
"3 -0.1608569175004959, 0.8489153981208801, -0.55... NCT02272751 \n",
|
| 368 |
+
"4 0.21379394829273224, 0.17073844373226166, -0.1... NCT00931606 "
|
| 369 |
+
]
|
| 370 |
+
},
|
| 371 |
+
"metadata": {},
|
| 372 |
+
"output_type": "display_data"
|
| 373 |
+
}
|
| 374 |
+
],
|
| 375 |
"source": [
|
| 376 |
"# Load knowledge graph\n",
|
| 377 |
"clinical_trials = pd.read_csv(\"clinical_trials_embeddings.csv\")\n",
|
utils.py
CHANGED
|
@@ -123,16 +123,16 @@ def get_similarities_among_diseases_uris(
|
|
| 123 |
return data
|
| 124 |
|
| 125 |
|
| 126 |
-
def augment_the_set_of_diseaces(
|
| 127 |
-
|
| 128 |
for i in range(15-len(diseases)):
|
| 129 |
with engine.connect() as conn:
|
| 130 |
with conn.begin():
|
| 131 |
sql = f"""
|
| 132 |
SELECT TOP 1 e2.uri AS new_disease, (SUM(VECTOR_COSINE(e1.embedding, e2.embedding))/ {len(diseases)}) AS score
|
| 133 |
FROM Test.EntityEmbeddings e1, Test.EntityEmbeddings e2
|
| 134 |
-
WHERE e1.uri IN ({','.join([f"'
|
| 135 |
-
AND e2.uri NOT IN ({','.join([f"'
|
| 136 |
AND e2.label != 'nan'
|
| 137 |
GROUP BY e2.label
|
| 138 |
ORDER BY score DESC
|
|
@@ -156,9 +156,7 @@ def get_diseases_related_to_a_textual_description(
|
|
| 156 |
) -> List[str]:
|
| 157 |
# Embed the description using sentence-transformers
|
| 158 |
description_embedding = get_embedding(description, encoder)
|
| 159 |
-
print(f"Size of the embedding: {len(description_embedding)}")
|
| 160 |
string_representation = str(description_embedding.tolist())[1:-1]
|
| 161 |
-
print(f"String representation: {string_representation}")
|
| 162 |
|
| 163 |
with engine.connect() as conn:
|
| 164 |
with conn.begin():
|
|
@@ -172,27 +170,25 @@ def get_diseases_related_to_a_textual_description(
|
|
| 172 |
|
| 173 |
return [{"uri": row[0], "distance": row[1]} for row in data]
|
| 174 |
|
| 175 |
-
def
|
| 176 |
diseases: List[str], encoder
|
| 177 |
) -> List[str]:
|
| 178 |
# Embed the diseases using sentence-transformers
|
| 179 |
diseases_string = ", ".join(diseases)
|
| 180 |
disease_embedding = get_embedding(diseases_string, encoder)
|
| 181 |
-
print(f"Size of the embedding: {len(disease_embedding)}")
|
| 182 |
string_representation = str(disease_embedding.tolist())[1:-1]
|
| 183 |
-
print(f"String representation: {string_representation}")
|
| 184 |
|
| 185 |
with engine.connect() as conn:
|
| 186 |
with conn.begin():
|
| 187 |
sql = f"""
|
| 188 |
-
SELECT TOP 5 d.
|
| 189 |
FROM Test.ClinicalTrials d
|
| 190 |
ORDER BY distance DESC
|
| 191 |
"""
|
| 192 |
result = conn.execute(text(sql))
|
| 193 |
data = result.fetchall()
|
| 194 |
|
| 195 |
-
return [{"
|
| 196 |
|
| 197 |
|
| 198 |
if __name__ == "__main__":
|
|
|
|
| 123 |
return data
|
| 124 |
|
| 125 |
|
| 126 |
+
def augment_the_set_of_diseaces(diseases: List[str]) -> str:
|
| 127 |
+
print(diseases)
|
| 128 |
for i in range(15-len(diseases)):
|
| 129 |
with engine.connect() as conn:
|
| 130 |
with conn.begin():
|
| 131 |
sql = f"""
|
| 132 |
SELECT TOP 1 e2.uri AS new_disease, (SUM(VECTOR_COSINE(e1.embedding, e2.embedding))/ {len(diseases)}) AS score
|
| 133 |
FROM Test.EntityEmbeddings e1, Test.EntityEmbeddings e2
|
| 134 |
+
WHERE e1.uri IN ({','.join([f"'{disease}'" for disease in diseases])})
|
| 135 |
+
AND e2.uri NOT IN ({','.join([f"'{disease}'" for disease in diseases])})
|
| 136 |
AND e2.label != 'nan'
|
| 137 |
GROUP BY e2.label
|
| 138 |
ORDER BY score DESC
|
|
|
|
| 156 |
) -> List[str]:
|
| 157 |
# Embed the description using sentence-transformers
|
| 158 |
description_embedding = get_embedding(description, encoder)
|
|
|
|
| 159 |
string_representation = str(description_embedding.tolist())[1:-1]
|
|
|
|
| 160 |
|
| 161 |
with engine.connect() as conn:
|
| 162 |
with conn.begin():
|
|
|
|
| 170 |
|
| 171 |
return [{"uri": row[0], "distance": row[1]} for row in data]
|
| 172 |
|
| 173 |
+
def get_clinical_trials_related_to_diseases(
|
| 174 |
diseases: List[str], encoder
|
| 175 |
) -> List[str]:
|
| 176 |
# Embed the diseases using sentence-transformers
|
| 177 |
diseases_string = ", ".join(diseases)
|
| 178 |
disease_embedding = get_embedding(diseases_string, encoder)
|
|
|
|
| 179 |
string_representation = str(disease_embedding.tolist())[1:-1]
|
|
|
|
| 180 |
|
| 181 |
with engine.connect() as conn:
|
| 182 |
with conn.begin():
|
| 183 |
sql = f"""
|
| 184 |
+
SELECT TOP 5 d.nct_id, VECTOR_COSINE(d.embedding, TO_VECTOR('{string_representation}', DOUBLE)) AS distance
|
| 185 |
FROM Test.ClinicalTrials d
|
| 186 |
ORDER BY distance DESC
|
| 187 |
"""
|
| 188 |
result = conn.execute(text(sql))
|
| 189 |
data = result.fetchall()
|
| 190 |
|
| 191 |
+
return [{"nct_id": row[0], "distance": row[1]} for row in data]
|
| 192 |
|
| 193 |
|
| 194 |
if __name__ == "__main__":
|