Spaces:
Sleeping
Sleeping
Add get_diseases_related_to_clinical_trials
Browse files
utils.py
CHANGED
|
@@ -150,6 +150,28 @@ def get_diseases_related_to_a_textual_description(
|
|
| 150 |
|
| 151 |
return [{"uri": row[0], "distance": row[1]} for row in data]
|
| 152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
|
| 154 |
if __name__ == "__main__":
|
| 155 |
username = "demo"
|
|
|
|
| 150 |
|
| 151 |
return [{"uri": row[0], "distance": row[1]} for row in data]
|
| 152 |
|
| 153 |
+
def get_diseases_related_to_clinical_trials(
|
| 154 |
+
diseases: List[str], encoder
|
| 155 |
+
) -> List[str]:
|
| 156 |
+
# Embed the diseases using sentence-transformers
|
| 157 |
+
diseases_string = ", ".join(diseases)
|
| 158 |
+
disease_embedding = get_embedding(diseases_string, encoder)
|
| 159 |
+
print(f"Size of the embedding: {len(disease_embedding)}")
|
| 160 |
+
string_representation = str(disease_embedding.tolist())[1:-1]
|
| 161 |
+
print(f"String representation: {string_representation}")
|
| 162 |
+
|
| 163 |
+
with engine.connect() as conn:
|
| 164 |
+
with conn.begin():
|
| 165 |
+
sql = f"""
|
| 166 |
+
SELECT TOP 5 d.uri, VECTOR_COSINE(d.embedding, TO_VECTOR('{string_representation}', DOUBLE)) AS distance
|
| 167 |
+
FROM Test.ClinicalTrials d
|
| 168 |
+
ORDER BY distance DESC
|
| 169 |
+
"""
|
| 170 |
+
result = conn.execute(text(sql))
|
| 171 |
+
data = result.fetchall()
|
| 172 |
+
|
| 173 |
+
return [{"uri": row[0], "distance": row[1]} for row in data]
|
| 174 |
+
|
| 175 |
|
| 176 |
if __name__ == "__main__":
|
| 177 |
username = "demo"
|