Spaces:
Runtime error
Runtime error
| # Step 1: Install Hugging Face Transformers | |
| # !pip install transformers -q | |
| # Step 2: Import Required Libraries | |
| from transformers import FNetForMaskedLM, FNetTokenizer, pipeline | |
| # Step 3: Load Pretrained FNet Model and Tokenizer | |
| model = FNetForMaskedLM.from_pretrained("google/fnet-base") | |
| tokenizer = FNetTokenizer.from_pretrained("google/fnet-base") | |
| # Step 4: Create a Fill-Mask Pipeline | |
| fill_mask = pipeline("fill-mask", model=model, tokenizer=tokenizer) | |
| # Step 5: Use the Model to Predict the Masked Word | |
| sentence = "The sun rises in the [MASK]." | |
| results = fill_mask(sentence) | |
| # Step 6: Print the Results | |
| print(f"Input: {sentence}") | |
| print("Predictions:") | |
| for res in results: | |
| print(f">> {res['sequence']} (Score: {res['score']:.4f})") | |