Spaces:
Runtime error
Runtime error
| import spaces | |
| import threading | |
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
| # Load the model and tokenizer locally | |
| model_name = "Qwen/Qwen3-0.6B" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained(model_name).to("cuda") | |
| # Define the function to handle chat responses | |
| def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p): | |
| # Prepare the prompt by combining history and system messages | |
| if system_message!= "": | |
| msg = [ | |
| {"role": "system", "content": system_message} | |
| ] | |
| else: | |
| msg = [] | |
| for user_input, assistant_response in history: | |
| msg.extend( | |
| [ | |
| {"role": "user", "content": user_input}, | |
| {"role": "assistant", "content": assistant_response} | |
| ] | |
| ) | |
| msg.append({"role": "user", "content": message}) | |
| prompt = tokenizer.apply_chat_template( | |
| msg, | |
| tokenize=False, | |
| add_generation_prompt=True | |
| ) | |
| # Tokenize the input prompt | |
| inputs = tokenizer(prompt, return_tensors="pt").to("cuda") | |
| streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
| # Use a thread to run the generation in parallel | |
| generation_thread = threading.Thread( | |
| target=model.generate, | |
| kwargs=dict( | |
| inputs=inputs.input_ids, | |
| max_length=max_tokens, | |
| streamer=streamer, | |
| do_sample=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| pad_token_id=tokenizer.eos_token_id, | |
| ), | |
| ) | |
| generation_thread.start() | |
| # Stream the tokens as they are generated | |
| text_buffer = "" | |
| for new_text in streamer: | |
| text_buffer+=new_text | |
| yield text_buffer | |
| # Create the Gradio interface | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="", label="System message"), | |
| gr.Slider(minimum=1, maximum=16384, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
| ] | |
| ) | |
| # Launch the Gradio app | |
| if __name__ == "__main__": | |
| demo.launch() |