Commit
·
e9f8271
1
Parent(s):
e50eb7e
update space
Browse files- app.py +51 -79
- requirements.txt +3 -5
app.py
CHANGED
|
@@ -1,102 +1,76 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import torch
|
| 3 |
import os
|
| 4 |
import numpy as np
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
#
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
#
|
| 11 |
-
|
| 12 |
-
hf_token = os.environ.get("HF_TOKEN")
|
| 13 |
|
| 14 |
-
#
|
| 15 |
-
if hf_token:
|
| 16 |
-
login(token=hf_token, add_to_git_credential=False)
|
| 17 |
-
print("Successfully logged in to Hugging Face Hub")
|
| 18 |
-
else:
|
| 19 |
-
print("Warning: No HF_TOKEN found. API access may be limited.")
|
| 20 |
-
|
| 21 |
-
# Initialize the Inference Client with authentication
|
| 22 |
-
client = InferenceClient(
|
| 23 |
-
model="nari-labs/Dia-1.6B",
|
| 24 |
-
token=hf_token
|
| 25 |
-
)
|
| 26 |
-
|
| 27 |
-
def generate_speech(
|
| 28 |
-
text,
|
| 29 |
-
audio_prompt=None,
|
| 30 |
-
seed=None
|
| 31 |
-
):
|
| 32 |
-
"""
|
| 33 |
-
Generate speech from text using Dia-1.6B model via Inference API
|
| 34 |
-
|
| 35 |
-
Args:
|
| 36 |
-
text (str): Input text to convert to speech
|
| 37 |
-
audio_prompt (file): Optional audio file for voice cloning
|
| 38 |
-
seed (int): Optional seed for reproducibility
|
| 39 |
-
|
| 40 |
-
Returns:
|
| 41 |
-
tuple: Audio sample rate (44100) and audio data
|
| 42 |
-
"""
|
| 43 |
-
# Prepare payload for the API
|
| 44 |
-
payload = {
|
| 45 |
-
"inputs": text
|
| 46 |
-
}
|
| 47 |
-
|
| 48 |
-
# Add seed if provided
|
| 49 |
-
if seed is not None and seed > 0:
|
| 50 |
-
payload["parameters"] = {"seed": int(seed)}
|
| 51 |
-
|
| 52 |
-
# Handle audio prompt if provided
|
| 53 |
-
if audio_prompt is not None:
|
| 54 |
-
# For audio prompt, we'd need to handle file upload and include it in the payload
|
| 55 |
-
# This may require a different approach depending on the API's capabilities
|
| 56 |
-
print(f"Audio prompt provided: {audio_prompt}")
|
| 57 |
-
|
| 58 |
-
# Call the inference API
|
| 59 |
-
try:
|
| 60 |
-
# Using audio_generation API endpoint
|
| 61 |
-
audio_output = client.audio_generation(
|
| 62 |
-
text,
|
| 63 |
-
seed=int(seed) if seed and seed > 0 else None
|
| 64 |
-
)
|
| 65 |
-
return 44100, np.array(audio_output.audio)
|
| 66 |
-
except Exception as e:
|
| 67 |
-
# If there's an error, print it and return an error message
|
| 68 |
-
print(f"Error calling API: {str(e)}")
|
| 69 |
-
# Return a silent audio sample to avoid breaking the UI
|
| 70 |
-
return 44100, np.zeros(1000)
|
| 71 |
-
|
| 72 |
-
# Define examples
|
| 73 |
examples = [
|
| 74 |
["[S1] Dia is an open weights text to dialogue model. [S2] You get full control over scripts and voices. [S1] Wow. Amazing. (laughs) [S2] Try it now on Git hub or Hugging Face."],
|
| 75 |
["[S1] The weather is so nice today! [S2] I know, it's perfect for a walk in the park."],
|
| 76 |
["[S1] Did you hear about the new text to speech model? [S2] Yes, it's called Dia and it's really impressive! [S1] (laughs) That's amazing! Can it do different voices? [S2] Absolutely, and you can even clone your own voice."]
|
| 77 |
]
|
| 78 |
|
| 79 |
-
#
|
| 80 |
demo = gr.Interface(
|
| 81 |
-
fn=
|
| 82 |
inputs=[
|
| 83 |
gr.Textbox(
|
| 84 |
-
label="Text",
|
| 85 |
placeholder="Enter text with [S1] and [S2] tags for different speakers, include (laughs), (coughs), etc. for non-verbal sounds",
|
| 86 |
lines=5
|
| 87 |
),
|
| 88 |
-
gr.Audio(
|
| 89 |
-
label="Audio Prompt (Optional)",
|
| 90 |
-
type="filepath",
|
| 91 |
-
value=None
|
| 92 |
-
),
|
| 93 |
gr.Number(
|
| 94 |
-
label="Seed (Optional)",
|
| 95 |
-
precision=0,
|
| 96 |
value=0
|
| 97 |
)
|
| 98 |
],
|
| 99 |
-
outputs=gr.Audio(label="Generated Speech"
|
| 100 |
title="Nari Labs Dia-1.6B Text-to-Speech",
|
| 101 |
description="""
|
| 102 |
# Dia 1.6B Text-to-Speech Model
|
|
@@ -106,12 +80,10 @@ demo = gr.Interface(
|
|
| 106 |
## Features:
|
| 107 |
- Generate dialogue using [S1] and [S2] tags for different speakers
|
| 108 |
- Include non-verbal communication like (laughs), (coughs), etc.
|
| 109 |
-
- Voice cloning with audio prompt upload
|
| 110 |
|
| 111 |
## Usage Tips:
|
| 112 |
- Use [S1] and [S2] tags to indicate different speakers
|
| 113 |
- Include non-verbal sounds in parentheses: (laughs), (clears throat), (sighs), etc.
|
| 114 |
-
- For voice cloning, upload an audio sample and include its transcript before your script
|
| 115 |
- Set a seed value for consistent voices across multiple generations
|
| 116 |
""",
|
| 117 |
examples=examples,
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import os
|
| 3 |
import numpy as np
|
| 4 |
+
import soundfile as sf
|
| 5 |
+
import tempfile
|
| 6 |
+
import requests
|
| 7 |
+
from huggingface_hub import InferenceClient
|
| 8 |
|
| 9 |
+
# Simple minimal app to demonstrate Nari Labs Dia-1.6B TTS model
|
| 10 |
+
class SimpleInference:
|
| 11 |
+
def __init__(self):
|
| 12 |
+
# Get API token from environment (in HF Spaces, this is automatically provided)
|
| 13 |
+
self.hf_token = os.environ.get("HF_TOKEN")
|
| 14 |
+
self.api = InferenceClient(model="nari-labs/Dia-1.6B", token=self.hf_token)
|
| 15 |
+
|
| 16 |
+
def generate_audio(self, text, seed=None):
|
| 17 |
+
"""Generate audio from text using the Dia model"""
|
| 18 |
+
try:
|
| 19 |
+
# Create payload for the API
|
| 20 |
+
payload = {"text": text}
|
| 21 |
+
if seed is not None and seed > 0:
|
| 22 |
+
payload["seed"] = int(seed)
|
| 23 |
+
|
| 24 |
+
# Call the Hugging Face Inference API
|
| 25 |
+
# API will return audio data
|
| 26 |
+
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as f:
|
| 27 |
+
temp_filename = f.name
|
| 28 |
+
|
| 29 |
+
# Call the API to generate audio
|
| 30 |
+
audio_output = self.api.audio_generation(
|
| 31 |
+
text,
|
| 32 |
+
seed=int(seed) if seed and seed > 0 else None
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
# Save the audio to a temporary file and read it back
|
| 36 |
+
sf.write(temp_filename, audio_output.audio, audio_output.sampling_rate)
|
| 37 |
+
audio_data, sample_rate = sf.read(temp_filename)
|
| 38 |
+
|
| 39 |
+
# Clean up the temporary file
|
| 40 |
+
os.unlink(temp_filename)
|
| 41 |
+
|
| 42 |
+
return (sample_rate, audio_data)
|
| 43 |
+
except Exception as e:
|
| 44 |
+
print(f"Error generating audio: {str(e)}")
|
| 45 |
+
# Return a silent audio sample to avoid breaking the UI
|
| 46 |
+
return (44100, np.zeros(1000))
|
| 47 |
|
| 48 |
+
# Initialize the inference model
|
| 49 |
+
model = SimpleInference()
|
|
|
|
| 50 |
|
| 51 |
+
# Define example inputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
examples = [
|
| 53 |
["[S1] Dia is an open weights text to dialogue model. [S2] You get full control over scripts and voices. [S1] Wow. Amazing. (laughs) [S2] Try it now on Git hub or Hugging Face."],
|
| 54 |
["[S1] The weather is so nice today! [S2] I know, it's perfect for a walk in the park."],
|
| 55 |
["[S1] Did you hear about the new text to speech model? [S2] Yes, it's called Dia and it's really impressive! [S1] (laughs) That's amazing! Can it do different voices? [S2] Absolutely, and you can even clone your own voice."]
|
| 56 |
]
|
| 57 |
|
| 58 |
+
# Define the Gradio interface
|
| 59 |
demo = gr.Interface(
|
| 60 |
+
fn=lambda text, seed=0: model.generate_audio(text, seed),
|
| 61 |
inputs=[
|
| 62 |
gr.Textbox(
|
| 63 |
+
label="Text",
|
| 64 |
placeholder="Enter text with [S1] and [S2] tags for different speakers, include (laughs), (coughs), etc. for non-verbal sounds",
|
| 65 |
lines=5
|
| 66 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
gr.Number(
|
| 68 |
+
label="Seed (Optional)",
|
| 69 |
+
precision=0,
|
| 70 |
value=0
|
| 71 |
)
|
| 72 |
],
|
| 73 |
+
outputs=gr.Audio(label="Generated Speech"),
|
| 74 |
title="Nari Labs Dia-1.6B Text-to-Speech",
|
| 75 |
description="""
|
| 76 |
# Dia 1.6B Text-to-Speech Model
|
|
|
|
| 80 |
## Features:
|
| 81 |
- Generate dialogue using [S1] and [S2] tags for different speakers
|
| 82 |
- Include non-verbal communication like (laughs), (coughs), etc.
|
|
|
|
| 83 |
|
| 84 |
## Usage Tips:
|
| 85 |
- Use [S1] and [S2] tags to indicate different speakers
|
| 86 |
- Include non-verbal sounds in parentheses: (laughs), (clears throat), (sighs), etc.
|
|
|
|
| 87 |
- Set a seed value for consistent voices across multiple generations
|
| 88 |
""",
|
| 89 |
examples=examples,
|
requirements.txt
CHANGED
|
@@ -1,7 +1,5 @@
|
|
| 1 |
gradio>=5.0.1
|
| 2 |
-
huggingface_hub>=0.
|
| 3 |
-
|
| 4 |
-
torch>=2.0.0
|
| 5 |
soundfile
|
| 6 |
-
|
| 7 |
-
git+https://github.com/nari-labs/dia.git
|
|
|
|
| 1 |
gradio>=5.0.1
|
| 2 |
+
huggingface_hub>=0.21.0
|
| 3 |
+
numpy>=1.20.0
|
|
|
|
| 4 |
soundfile
|
| 5 |
+
requests
|
|
|