Spaces:
Running
Running
| # coding=utf-8 | |
| # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| Processor class for Phi3-V. | |
| """ | |
| import re | |
| from typing import List, Optional, Union | |
| import torch | |
| import transformers | |
| from transformers.feature_extraction_utils import BatchFeature | |
| from transformers.image_utils import ImageInput | |
| from transformers.processing_utils import ProcessorMixin | |
| from transformers.tokenization_utils_base import PaddingStrategy, TextInput, TruncationStrategy | |
| from transformers.utils import TensorType | |
| from .image_processing_phi3_v import Phi3VImageProcessor | |
| transformers.Phi3VImageProcessor = Phi3VImageProcessor | |
| class Phi3VProcessor(ProcessorMixin): | |
| r""" | |
| Constructs a Phi3-V processor which wraps a Phi3-V image processor and a LLaMa tokenizer into a single processor. | |
| [`Phi3VProcessor`] offers all the functionalities of [`Phi3VImageProcessor`] and [`LlamaTokenizerFast`]. See the | |
| [`~Phi3VProcessor.__call__`] and [`~Phi3VProcessor.decode`] for more information. | |
| Args: | |
| image_processor ([`Phi3VImageProcessor`], *optional*): | |
| The image processor is a required input. | |
| tokenizer ([`LlamaTokenizerFast`], *optional*): | |
| The tokenizer is a required input. | |
| """ | |
| attributes = ["image_processor", "tokenizer"] | |
| image_processor_class = "Phi3VImageProcessor" | |
| tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast") | |
| special_image_token = "<|image|>" | |
| def __init__(self, image_processor, tokenizer): | |
| self.image_processor = image_processor | |
| self.tokenizer = tokenizer | |
| self.num_img_tokens = image_processor.num_img_tokens | |
| self.img_tokens = [f"<|image_{i + 1}|>" for i in range(1000000)] | |
| def __call__( | |
| self, | |
| text: Union[TextInput, List[TextInput]], | |
| images: ImageInput = None, | |
| padding: Union[bool, str, PaddingStrategy] = False, | |
| truncation: Union[bool, str, TruncationStrategy] = None, | |
| max_length=None, | |
| return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, | |
| ) -> BatchFeature: | |
| """ | |
| Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` | |
| and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode | |
| the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to | |
| Phi3ImageProcessor's [`~Phi3ImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring | |
| of the above two methods for more information. | |
| Args: | |
| text (`str`, `List[str]`, `List[List[str]]`): | |
| The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings | |
| (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set | |
| `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). | |
| images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): | |
| The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch | |
| tensor. Both channels-first and channels-last formats are supported. | |
| padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): | |
| Select a strategy to pad the returned sequences (according to the model's padding side and padding | |
| index) among: | |
| - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single | |
| sequence if provided). | |
| - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum | |
| acceptable input length for the model if that argument is not provided. | |
| - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different | |
| lengths). | |
| max_length (`int`, *optional*): | |
| Maximum length of the returned list and optionally padding length (see above). | |
| truncation (`bool`, *optional*): | |
| Activates truncation to cut input sequences longer than `max_length` to `max_length`. | |
| return_tensors (`str` or [`~utils.TensorType`], *optional*): | |
| If set, will return tensors of a particular framework. Acceptable values are: | |
| - `'tf'`: Return TensorFlow `tf.constant` objects. | |
| - `'pt'`: Return PyTorch `torch.Tensor` objects. | |
| - `'np'`: Return NumPy `np.ndarray` objects. | |
| - `'jax'`: Return JAX `jnp.ndarray` objects. | |
| Returns: | |
| [`BatchFeature`]: A [`BatchFeature`] with the following fields: | |
| - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. | |
| - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when | |
| `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not | |
| `None`). | |
| - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. | |
| """ | |
| if images is not None: | |
| image_inputs = self.image_processor(images, return_tensors=return_tensors) | |
| else: | |
| image_inputs = {} | |
| inputs = self._convert_images_texts_to_inputs(image_inputs, text, padding=padding, truncation=truncation, | |
| max_length=max_length, return_tensors=return_tensors) | |
| return inputs | |
| def calc_num_image_tokens(self, images: ImageInput): | |
| """ Calculate the number of image tokens for each image. | |
| Args: | |
| images (`ImageInput`): | |
| Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If | |
| passing in images with pixel values between 0 and 1, set `do_rescale=False`. | |
| """ | |
| return self.image_processor.calc_num_image_tokens(images) | |
| def calc_num_image_tokens_from_image_size(self, width, height): | |
| """ Calculate the number of image token for an image with given width and height. | |
| Args: | |
| width (`int`): | |
| Width of the image. | |
| height (`int`): | |
| Height of the image. | |
| """ | |
| return self.image_processor.calc_num_image_tokens_from_image_size(width, height) | |
| def special_image_token_id(self): | |
| return self.tokenizer.convert_tokens_to_ids(self.special_image_token) | |
| def get_special_image_token_id(self): | |
| return self.tokenizer.convert_tokens_to_ids(self.special_image_token) | |
| def _convert_images_texts_to_inputs(self, images, texts, padding=False, truncation=None, max_length=None, | |
| return_tensors=None): | |
| if not len(images): | |
| model_inputs = self.tokenizer(texts, return_tensors=return_tensors, padding=padding, truncation=truncation, | |
| max_length=max_length) | |
| return BatchFeature(data={**model_inputs}) | |
| pattern = r"<\|image_\d+\|>" | |
| prompt_chunks = [self.tokenizer(chunk).input_ids for chunk in re.split(pattern, texts)] | |
| if 'num_img_tokens' in images: | |
| num_img_tokens = images['num_img_tokens'] | |
| else: | |
| assert 'num_crops' in images, 'num_crops must be provided in images if num_img_tokens is not provided' | |
| num_crops = images['num_crops'] | |
| num_img_tokens = [_num_crops * self.num_img_tokens for _num_crops in num_crops] | |
| images, image_sizes = images['pixel_values'], images['image_sizes'] | |
| # image_tags needs to start from 1 to n | |
| image_tags = re.findall(pattern, texts) | |
| # image_ids = [int(s.split("|")[1].split("_")[-1]) * -1 for s in image_tags] | |
| # image_ids_pad = [[iid]*num_img_tokens[i] for i, iid in enumerate(image_ids)] | |
| image_ids = [int(s.split("|")[1].split("_")[-1]) for s in image_tags] | |
| unique_image_ids = sorted(list(set(image_ids))) | |
| # image_ids must start from 1, and must be continuous int, e.g. [1, 2, 3], cannot be [1, 4, 5] | |
| # check the condition | |
| assert unique_image_ids == list(range(1, | |
| len(unique_image_ids) + 1)), f"image_ids must start from 1, and must be continuous int, e.g. [1, 2, 3], cannot be {unique_image_ids}" | |
| # total images must be the same as the number of image tags | |
| assert len(unique_image_ids) == len( | |
| images), f"total images must be the same as the number of image tags, got {len(unique_image_ids)} image tags and {len(images)} images" | |
| image_ids_pad = [[-iid] * num_img_tokens[iid - 1] for iid in image_ids] | |
| def insert_separator(X, sep_list): | |
| if len(X) > len(sep_list): | |
| sep_list.append([]) | |
| return [ele for sublist in zip(X, sep_list) for ele in sublist] | |
| input_ids = [] | |
| offset = 0 | |
| for x in insert_separator(prompt_chunks, image_ids_pad): | |
| input_ids.extend(x[offset:]) | |
| input_ids = torch.tensor(input_ids, dtype=torch.long).unsqueeze(0) | |
| attention_mask = (input_ids > -1000000).to(torch.long) | |
| return BatchFeature(data={"input_ids": input_ids, | |
| "attention_mask": attention_mask, | |
| "pixel_values": images, | |
| "image_sizes": image_sizes}) | |
| # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama | |
| def batch_decode(self, *args, **kwargs): | |
| """ | |
| This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please | |
| refer to the docstring of this method for more information. | |
| """ | |
| return self.tokenizer.batch_decode(*args, **kwargs) | |
| # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama | |
| def decode(self, *args, **kwargs): | |
| """ | |
| This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to | |
| the docstring of this method for more information. | |
| """ | |
| return self.tokenizer.decode(*args, **kwargs) | |
| # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names | |
| def model_input_names(self): | |
| tokenizer_input_names = self.tokenizer.model_input_names | |
| image_processor_input_names = self.image_processor.model_input_names | |
| return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) |