Spaces:
Runtime error
Runtime error
chore: refactor src
Browse files- app.py +16 -5
- requirements.txt +3 -1
- src/__init__.py +0 -0
- augmentations.py β src/augmentations.py +0 -0
- models.py β src/models.py +1 -1
- utils.py β src/utils.py +0 -1
app.py
CHANGED
|
@@ -1,16 +1,21 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
|
| 4 |
-
from augmentations import get_videomae_transform
|
| 5 |
-
from models import load_model
|
| 6 |
-
from utils import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 9 |
|
| 10 |
-
transform = get_videomae_transform()
|
| 11 |
-
|
| 12 |
|
| 13 |
def get_visualisations(mask_ratio, video_path):
|
|
|
|
|
|
|
| 14 |
frames, ids = get_frames(path=video_path, transform=transform)
|
| 15 |
|
| 16 |
model, masks, patch_size = load_model(
|
|
@@ -36,6 +41,12 @@ def get_visualisations(mask_ratio, video_path):
|
|
| 36 |
|
| 37 |
|
| 38 |
with gr.Blocks() as app:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
video = gr.Video(
|
| 40 |
value="assets/example.mp4",
|
| 41 |
)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
|
| 4 |
+
from src.augmentations import get_videomae_transform
|
| 5 |
+
from src.models import load_model
|
| 6 |
+
from src.utils import (
|
| 7 |
+
create_plot,
|
| 8 |
+
get_frames,
|
| 9 |
+
get_videomae_outputs,
|
| 10 |
+
prepare_frames_masks,
|
| 11 |
+
)
|
| 12 |
|
| 13 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 14 |
|
|
|
|
|
|
|
| 15 |
|
| 16 |
def get_visualisations(mask_ratio, video_path):
|
| 17 |
+
transform = get_videomae_transform()
|
| 18 |
+
|
| 19 |
frames, ids = get_frames(path=video_path, transform=transform)
|
| 20 |
|
| 21 |
model, masks, patch_size = load_model(
|
|
|
|
| 41 |
|
| 42 |
|
| 43 |
with gr.Blocks() as app:
|
| 44 |
+
gr.Markdown(
|
| 45 |
+
"""
|
| 46 |
+
# VideoMAE Reconstruction Demo
|
| 47 |
+
To read more about the Self-Supervised Learning techniques for video please refer to the [Lightly AI blogpost on Self-Supervised Learning for Videos](www.lightly.ai/post/self-supervised-learning-for-videos).
|
| 48 |
+
""" # noqa: E501
|
| 49 |
+
)
|
| 50 |
video = gr.Video(
|
| 51 |
value="assets/example.mp4",
|
| 52 |
)
|
requirements.txt
CHANGED
|
@@ -1,6 +1,8 @@
|
|
|
|
|
| 1 |
einops
|
| 2 |
-
|
| 3 |
numpy
|
|
|
|
| 4 |
timm
|
| 5 |
torch
|
| 6 |
torchvision
|
|
|
|
| 1 |
+
eva-decord
|
| 2 |
einops
|
| 3 |
+
gradio
|
| 4 |
numpy
|
| 5 |
+
Pillow
|
| 6 |
timm
|
| 7 |
torch
|
| 8 |
torchvision
|
src/__init__.py
ADDED
|
File without changes
|
augmentations.py β src/augmentations.py
RENAMED
|
File without changes
|
models.py β src/models.py
RENAMED
|
@@ -8,7 +8,7 @@ import torch.nn.functional as F
|
|
| 8 |
import torch.utils.checkpoint as checkpoint
|
| 9 |
from timm.models.layers import drop_path, to_2tuple, trunc_normal_
|
| 10 |
|
| 11 |
-
from augmentations import TubeMaskingGenerator
|
| 12 |
|
| 13 |
__all__ = ["load_model"]
|
| 14 |
|
|
|
|
| 8 |
import torch.utils.checkpoint as checkpoint
|
| 9 |
from timm.models.layers import drop_path, to_2tuple, trunc_normal_
|
| 10 |
|
| 11 |
+
from src.augmentations import TubeMaskingGenerator
|
| 12 |
|
| 13 |
__all__ = ["load_model"]
|
| 14 |
|
utils.py β src/utils.py
RENAMED
|
@@ -139,6 +139,5 @@ def create_plot(images):
|
|
| 139 |
axes[i, j].set_title(column_names[j], fontsize=16)
|
| 140 |
|
| 141 |
plt.tight_layout()
|
| 142 |
-
plt.show()
|
| 143 |
|
| 144 |
return fig
|
|
|
|
| 139 |
axes[i, j].set_title(column_names[j], fontsize=16)
|
| 140 |
|
| 141 |
plt.tight_layout()
|
|
|
|
| 142 |
|
| 143 |
return fig
|