Spaces:
Running
on
Zero
Running
on
Zero
File size: 26,073 Bytes
71f5363 7d4ee71 71f5363 7d4ee71 6571814 0d5afae ec6ec95 fe9c804 71f5363 7d4ee71 01b2d20 7d4ee71 841fa13 7d4ee71 b001fe7 7d4ee71 b001fe7 7d4ee71 b001fe7 7d4ee71 b001fe7 7d4ee71 b001fe7 7d4ee71 f59d578 e0ec356 4db4904 e0ec356 cada4f8 e0ec356 cada4f8 e0ec356 a2cff3a e0ec356 a2cff3a e0ec356 a2cff3a cada4f8 a2cff3a f59d578 a2cff3a f59d578 a2cff3a f59d578 a2cff3a f59d578 a2cff3a f59d578 a2cff3a f59d578 a2cff3a 5c5af2f a2cff3a f59d578 a2cff3a 5c5af2f a2cff3a f59d578 a2cff3a f59d578 a2cff3a f59d578 a2cff3a 7d4ee71 a2cff3a 841fa13 a2cff3a 7d4ee71 a2cff3a 6571814 a2cff3a 6571814 a2cff3a 7d4ee71 b001fe7 a2cff3a 7d4ee71 a2cff3a 7d4ee71 a2cff3a 7d4ee71 a2cff3a 7d4ee71 e0ec356 7d4ee71 b001fe7 7d4ee71 cada4f8 7d4ee71 7758b4a b8b1f98 7758b4a b8b1f98 7758b4a 7d4ee71 b6713ac 7d4ee71 cc842fe fee7cbb cc842fe b001fe7 841fa13 421ed1d 7d4ee71 fee7cbb 7d4ee71 a2cff3a 841fa13 b001fe7 a2cff3a b001fe7 7d4ee71 841fa13 f59d578 7d4ee71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 |
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
from diffusers import FlowMatchEulerDiscreteScheduler
from optimization import optimize_pipeline_
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
from huggingface_hub import InferenceClient
import math
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
import os
import base64
from io import BytesIO
import json
import time # Added for history update delay
SYSTEM_PROMPT = '''
# Edit Instruction Rewriter
You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable professional-level edit instruction based on the user-provided instruction and the image to be edited.
Please strictly follow the rewriting rules below:
## 1. General Principles
- Keep the rewritten prompt **concise and comprehensive**. Avoid overly long sentences and unnecessary descriptive language.
- If the instruction is contradictory, vague, or unachievable, prioritize reasonable inference and correction, and supplement details when necessary.
- Keep the main part of the original instruction unchanged, only enhancing its clarity, rationality, and visual feasibility.
- All added objects or modifications must align with the logic and style of the scene in the input images.
- If multiple sub-images are to be generated, describe the content of each sub-image individually.
## 2. Task-Type Handling Rules
### 1. Add, Delete, Replace Tasks
- If the instruction is clear (already includes task type, target entity, position, quantity, attributes), preserve the original intent and only refine the grammar.
- If the description is vague, supplement with minimal but sufficient details (category, color, size, orientation, position, etc.). For example:
> Original: "Add an animal"
> Rewritten: "Add a light-gray cat in the bottom-right corner, sitting and facing the camera"
- Remove meaningless instructions: e.g., "Add 0 objects" should be ignored or flagged as invalid.
- For replacement tasks, specify "Replace Y with X" and briefly describe the key visual features of X.
### 2. Text Editing Tasks
- All text content must be enclosed in English double quotes `" "`. Keep the original language of the text, and keep the capitalization.
- Both adding new text and replacing existing text are text replacement tasks, For example:
- Replace "xx" to "yy"
- Replace the mask / bounding box to "yy"
- Replace the visual object to "yy"
- Specify text position, color, and layout only if user has required.
- If font is specified, keep the original language of the font.
### 3. Human Editing Tasks
- Make the smallest changes to the given user's prompt.
- If changes to background, action, expression, camera shot, or ambient lighting are required, please list each modification individually.
- **Edits to makeup or facial features / expression must be subtle, not exaggerated, and must preserve the subject's identity consistency.**
> Original: "Add eyebrows to the face"
> Rewritten: "Slightly thicken the person's eyebrows with little change, look natural."
### 4. Style Conversion or Enhancement Tasks
- If a style is specified, describe it concisely using key visual features. For example:
> Original: "Disco style"
> Rewritten: "1970s disco style: flashing lights, disco ball, mirrored walls, vibrant colors"
- For style reference, analyze the original image and extract key characteristics (color, composition, texture, lighting, artistic style, etc.), integrating them into the instruction.
- **Colorization tasks (including old photo restoration) must use the fixed template:**
"Restore and colorize the old photo."
- Clearly specify the object to be modified. For example:
> Original: Modify the subject in Picture 1 to match the style of Picture 2.
> Rewritten: Change the girl in Picture 1 to the ink-wash style of Picture 2 — rendered in black-and-white watercolor with soft color transitions.
### 5. Material Replacement
- Clearly specify the object and the material. For example: "Change the material of the apple to papercut style."
- For text material replacement, use the fixed template:
"Change the material of text "xxxx" to laser style"
### 6. Logo/Pattern Editing
- Material replacement should preserve the original shape and structure as much as possible. For example:
> Original: "Convert to sapphire material"
> Rewritten: "Convert the main subject in the image to sapphire material, preserving similar shape and structure"
- When migrating logos/patterns to new scenes, ensure shape and structure consistency. For example:
> Original: "Migrate the logo in the image to a new scene"
> Rewritten: "Migrate the logo in the image to a new scene, preserving similar shape and structure"
### 7. Multi-Image Tasks
- Rewritten prompts must clearly point out which image's element is being modified. For example:
> Original: "Replace the subject of picture 1 with the subject of picture 2"
> Rewritten: "Replace the girl of picture 1 with the boy of picture 2, keeping picture 2's background unchanged"
- For stylization tasks, describe the reference image's style in the rewritten prompt, while preserving the visual content of the source image.
## 3. Rationale and Logic Check
- Resolve contradictory instructions: e.g., "Remove all trees but keep all trees" requires logical correction.
- Supplement missing critical information: e.g., if position is unspecified, choose a reasonable area based on composition (near subject, blank space, center/edge, etc.).
# Output Format Example
```json
{
"Rewritten": "..."
}
'''
NEXT_SCENE_SYSTEM_PROMPT = '''
# Next Scene Prompt Generator
You are a cinematic AI director assistant. Your task is to analyze the provided image and generate a compelling "Next Scene" prompt that describes the natural cinematic progression from the current frame.
## Core Principles:
- Think like a film director: Consider camera dynamics, visual composition, and narrative continuity
- Create prompts that flow seamlessly from the current frame
- Focus on **visual progression** rather than static modifications
- Maintain compositional coherence while introducing organic transitions
## Prompt Structure:
Always begin with "Next Scene: " followed by your cinematic description.
## Key Elements to Include:
1. **Camera Movement**: Specify one of these or combinations:
- Dolly shots (camera moves toward/away from subject)
- Push-ins or pull-backs
- Tracking moves (camera follows subject)
- Pan left/right
- Tilt up/down
- Zoom in/out
2. **Framing Evolution**: Describe how the shot composition changes:
- Wide to close-up transitions
- Angle shifts (high angle to eye level, etc.)
- Reframing of subjects
- Revealing new elements in frame
3. **Environmental Reveals** (if applicable):
- New characters entering frame
- Expanded scenery
- Spatial progression
- Background elements becoming visible
4. **Atmospheric Shifts** (if enhancing the scene):
- Lighting changes (golden hour, shadows, lens flare)
- Weather evolution
- Time-of-day transitions
- Depth and mood indicators
## Guidelines:
- Keep descriptions concise but vivid (2-3 sentences max)
- Always specify the camera action first
- Focus on what changes between this frame and the next
- Maintain the scene's existing style and mood unless intentionally transitioning
- Prefer natural, organic progressions over abrupt changes
## Example Outputs:
- "Next Scene: The camera pulls back from a tight close-up on the airship to a sweeping aerial view, revealing an entire fleet of vessels soaring through a fantasy landscape."
- "Next Scene: The camera tracks forward and tilts down, bringing the sun and helicopters closer into frame as a strong lens flare intensifies."
- "Next Scene: The camera pans right, removing the dragon and rider from view while revealing more of the floating mountain range in the distance."
- "Next Scene: The camera moves slightly forward as sunlight breaks through the clouds, casting a soft glow around the character's silhouette in the mist. Realistic cinematic style, atmospheric depth."
## Output Format:
Return ONLY the next scene prompt as plain text, starting with "Next Scene: "
Do NOT include JSON formatting or additional explanations.
'''
# --- Prompt Enhancement using Hugging Face InferenceClient ---
def polish_prompt_hf(prompt, img_list):
"""
Rewrites the prompt using a Hugging Face InferenceClient.
"""
# Ensure HF_TOKEN is set
api_key = os.environ.get("HF_TOKEN")
if not api_key:
print("Warning: HF_TOKEN not set. Falling back to original prompt.")
return prompt
try:
# Initialize the client
prompt = f"{SYSTEM_PROMPT}\n\nUser Input: {prompt}\n\nRewritten Prompt:"
client = InferenceClient(
provider="cerebras",
api_key=api_key,
)
# Format the messages for the chat completions API
sys_promot = "you are a helpful assistant, you should provide useful answers to users."
messages = [
{"role": "system", "content": sys_promot},
{"role": "user", "content": []}]
for img in img_list:
messages[1]["content"].append(
{"image": f"data:image/png;base64,{encode_image(img)}"})
messages[1]["content"].append({"text": f"{prompt}"})
# Call the API
completion = client.chat.completions.create(
model="Qwen/Qwen3-235B-A22B-Instruct-2507",
messages=messages,
)
# Parse the response
result = completion.choices[0].message.content
# Try to extract JSON if present
if '{"Rewritten"' in result:
try:
# Clean up the response
result = result.replace('```json', '').replace('```', '')
result_json = json.loads(result)
polished_prompt = result_json.get('Rewritten', result)
except:
polished_prompt = result
else:
polished_prompt = result
polished_prompt = polished_prompt.strip().replace("\n", " ")
return polished_prompt
except Exception as e:
print(f"Error during API call to Hugging Face: {e}")
# Fallback to original prompt if enhancement fails
return prompt
def next_scene_prompt(original_prompt, img_list):
"""
Rewrites the prompt using a Hugging Face InferenceClient.
Supports multiple images via img_list.
"""
# Ensure HF_TOKEN is set
api_key = os.environ.get("HF_TOKEN")
if not api_key:
print("Warning: HF_TOKEN not set. Falling back to original prompt.")
return original_prompt
prompt = f"{NEXT_SCENE_SYSTEM_PROMPT}"
system_prompt = "you are a helpful assistant, you should provide useful answers to users."
try:
# Initialize the client
client = InferenceClient(
provider="nebius",
api_key=api_key,
)
# Convert list of images to base64 data URLs
image_urls = []
if img_list is not None:
# Ensure img_list is actually a list
if not isinstance(img_list, list):
img_list = [img_list]
for img in img_list:
image_url = None
# If img is a PIL Image
if hasattr(img, 'save'): # Check if it's a PIL Image
buffered = BytesIO()
img.save(buffered, format="PNG")
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
image_url = f"data:image/png;base64,{img_base64}"
# If img is already a file path (string)
elif isinstance(img, str):
with open(img, "rb") as image_file:
img_base64 = base64.b64encode(image_file.read()).decode('utf-8')
image_url = f"data:image/png;base64,{img_base64}"
else:
print(f"Warning: Unexpected image type: {type(img)}, skipping...")
continue
if image_url:
image_urls.append(image_url)
# Build the content array with text first, then all images
content = [
{
"type": "text",
"text": prompt
}
]
# Add all images to the content
for image_url in image_urls:
content.append({
"type": "image_url",
"image_url": {
"url": image_url
}
})
# Format the messages for the chat completions API
messages = [
{"role": "system", "content": system_prompt},
{
"role": "user",
"content": content
}
]
# Call the API
completion = client.chat.completions.create(
model="Qwen/Qwen2.5-VL-72B-Instruct",
messages=messages,
)
# Parse the response
result = completion.choices[0].message.content
# Try to extract JSON if present
if '"Rewritten"' in result:
try:
# Clean up the response
result = result.replace('```json', '').replace('```', '')
result_json = json.loads(result)
polished_prompt = result_json.get('Rewritten', result)
except:
polished_prompt = result
else:
polished_prompt = result
polished_prompt = polished_prompt.strip().replace("\n", " ")
return polished_prompt
except Exception as e:
print(f"Error during API call to Hugging Face: {e}")
# Fallback to original prompt if enhancement fails
return original_prompt
def update_history(new_images, history):
"""Updates the history gallery with the new images."""
time.sleep(0.5) # Small delay to ensure images are ready
if history is None:
history = []
if new_images is not None and len(new_images) > 0:
if not isinstance(history, list):
history = list(history) if history else []
for img in new_images:
history.insert(0, img)
history = history[:20] # Keep only last 20 images
return history
def use_history_as_input(evt: gr.SelectData):
"""Sets the selected history image as the new input image."""
if evt.value is not None:
return gr.update(value=[(evt.value,)])
return gr.update()
def encode_image(pil_image):
import io
buffered = io.BytesIO()
pil_image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
# --- Model Loading ---
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509",
transformer= QwenImageTransformer2DModel.from_pretrained("linoyts/Qwen-Image-Edit-Rapid-AIO",
subfolder='transformer',
torch_dtype=dtype,
device_map='cuda'),torch_dtype=dtype).to(device)
pipe.load_lora_weights(
"lovis93/next-scene-qwen-image-lora-2509",
weight_name="next-scene_lora-v2-3000.safetensors", adapter_name="next-scene"
)
pipe.set_adapters(["next-scene"], adapter_weights=[1.])
pipe.fuse_lora(adapter_names=["next-scene"], lora_scale=1.)
pipe.unload_lora_weights()
# Apply the same optimizations from the first version
pipe.transformer.__class__ = QwenImageTransformer2DModel
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
# --- Ahead-of-time compilation ---
optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt")
# --- UI Constants and Helpers ---
MAX_SEED = np.iinfo(np.int32).max
def use_output_as_input(output_images):
"""Convert output images to input format for the gallery"""
if output_images is None or len(output_images) == 0:
return []
return output_images
def suggest_next_scene_prompt(images):
pil_images = []
if images is not None:
for item in images:
try:
if isinstance(item[0], Image.Image):
pil_images.append(item[0].convert("RGB"))
elif isinstance(item[0], str):
pil_images.append(Image.open(item[0]).convert("RGB"))
elif hasattr(item, "name"):
pil_images.append(Image.open(item.name).convert("RGB"))
except Exception:
continue
if len(pil_images) > 0:
prompt = next_scene_prompt("", pil_images)
else:
prompt = ""
print("next scene prompt: ", prompt)
return prompt
# --- Main Inference Function (with hardcoded negative prompt) ---
@spaces.GPU(duration=300)
def infer(
images,
prompt,
seed=42,
randomize_seed=False,
true_guidance_scale=1.0,
num_inference_steps=4,
height=None,
width=None,
rewrite_prompt=True,
num_images_per_prompt=1,
progress=gr.Progress(track_tqdm=True),
):
"""
Generates an image using the local Qwen-Image diffusers pipeline.
"""
# Hardcode the negative prompt as requested
negative_prompt = " "
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Set up the generator for reproducibility
generator = torch.Generator(device=device).manual_seed(seed)
# Load input images into PIL Images
pil_images = []
if images is not None:
for item in images:
try:
if isinstance(item[0], Image.Image):
pil_images.append(item[0].convert("RGB"))
elif isinstance(item[0], str):
pil_images.append(Image.open(item[0]).convert("RGB"))
elif hasattr(item, "name"):
pil_images.append(Image.open(item.name).convert("RGB"))
except Exception:
continue
if height==256 and width==256:
height, width = None, None
print(f"Calling pipeline with prompt: '{prompt}'")
print(f"Negative Prompt: '{negative_prompt}'")
print(f"Seed: {seed}, Steps: {num_inference_steps}, Guidance: {true_guidance_scale}, Size: {width}x{height}")
if rewrite_prompt and len(pil_images) > 0:
prompt = polish_prompt_hf(prompt, pil_images)
print(f"Rewritten Prompt: {prompt}")
# Generate the image
image = pipe(
image=pil_images if len(pil_images) > 0 else None,
prompt=prompt,
height=height,
width=width,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
generator=generator,
true_cfg_scale=true_guidance_scale,
num_images_per_prompt=num_images_per_prompt,
).images
# Return images, seed, and make button visible
return image, seed, gr.update(visible=True)
# --- Examples and UI Layout ---
examples = []
css = """
#col-container {
margin: 0 auto;
max-width: 1024px;
}
#logo-title {
text-align: center;
}
#logo-title img {
width: 400px;
}
#edit_text{margin-top: -62px !important}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML("""
<div id="logo-title">
<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_edit_logo.png" alt="Qwen-Image Edit Logo" width="400" style="display: block; margin: 0 auto;">
<h2 style="font-style: italic;color: #5b47d1;margin-top: -27px !important;margin-left: 96px">Next Scene 🎬</h2>
</div>
""")
gr.Markdown("""
This demo uses the new [Qwen-Image-Edit-2509](https://huggingface.co/Qwen/Qwen-Image-Edit-2509) with [lovis93/next-scene-qwen-image-lora](https://huggingface.co/lovis93/next-scene-qwen-image-lora-2509) for cinematic image sequences with natural visual progression from frame to frame 🎥 and [Phr00t/Qwen-Image-Edit-Rapid-AIO](https://huggingface.co/Phr00t/Qwen-Image-Edit-Rapid-AIO/tree/main) + [AoT compilation & FA3](https://huggingface.co/blog/zerogpu-aoti) for accelerated 4-step inference.
Try on [Qwen Chat](https://chat.qwen.ai/), or [download model](https://huggingface.co/Qwen/Qwen-Image-Edit-2509) to run locally with ComfyUI or diffusers.
""")
with gr.Row():
with gr.Column():
input_images = gr.Gallery(label="Input Images",
show_label=False,
type="pil",
interactive=True)
prompt = gr.Text(
label="Prompt 🪄",
show_label=True,
placeholder="Next scene: The camera dollies in to a tight close-up...",
)
run_button = gr.Button("Edit!", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
true_guidance_scale = gr.Slider(
label="True guidance scale",
minimum=1.0,
maximum=10.0,
step=0.1,
value=1.0
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=40,
step=1,
value=4,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=2048,
step=8,
value=None,
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=2048,
step=8,
value=None,
)
rewrite_prompt = gr.Checkbox(label="Rewrite prompt", value=False)
with gr.Column():
result = gr.Gallery(label="Result", show_label=False, type="pil")
# Add this button right after the result gallery - initially hidden
use_output_btn = gr.Button("↗️ Use as input", variant="secondary", size="sm", visible=False)
with gr.Row():
gr.Markdown("### 📜 History")
clear_history_button = gr.Button("🗑️ Clear History", size="sm", variant="stop")
history_gallery = gr.Gallery(
label="Click any image to use as input",
interactive=False,
show_label=True
)
gr.Examples(examples=[
[["disaster_girl.jpg", "grumpycat.png"], "Next Scene: the camera zooms in, showing the cat walking away from the fire"],
[["wednesday.png"], "Next Scene: The camera pulls back and rises to an elevated angle, revealing the full dance floor with the choreographed movements of all dancers as the central figure becomes part of the larger ensemble."],
],
inputs=[input_images, prompt],
outputs=[result, seed],
fn=infer,
cache_examples="lazy")
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
input_images,
prompt,
seed,
randomize_seed,
true_guidance_scale,
num_inference_steps,
height,
width,
rewrite_prompt,
],
outputs=[result, seed, use_output_btn], # Added use_output_btn to outputs
).then(
fn=update_history,
inputs=[result, history_gallery],
outputs=history_gallery,
)
# Add the new event handler for the "Use Output as Input" button
use_output_btn.click(
fn=use_output_as_input,
inputs=[result],
outputs=[input_images]
)
# History gallery event handlers
history_gallery.select(
fn=use_history_as_input,
inputs=None,
outputs=[input_images],
)
clear_history_button.click(
fn=lambda: [],
inputs=None,
outputs=history_gallery,
)
input_images.change(fn=suggest_next_scene_prompt, inputs=[input_images], outputs=[prompt])
if __name__ == "__main__":
demo.launch() |