Spaces:
Paused
Paused
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import VideoLlavaForConditionalGeneration, VideoLlavaProcessor, TextIteratorStreamer
|
| 3 |
+
from threading import Thread
|
| 4 |
+
import re
|
| 5 |
+
import time
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import torch
|
| 8 |
+
import cv2
|
| 9 |
+
import spaces
|
| 10 |
+
|
| 11 |
+
model = VideoLlavaForConditionalGeneration.from_pretrained("LanguageBind/Video-LLaVA-7B-hf", torch_dtype=torch.float16, device_map="cuda")
|
| 12 |
+
processor = VideoLlavaProcessor.from_pretrained("LanguageBind/Video-LLaVA-7B-hf")
|
| 13 |
+
#model.to("cuda")
|
| 14 |
+
|
| 15 |
+
def replace_video_with_images(text, frames):
|
| 16 |
+
return text.replace("<video>", "<image>" * frames)
|
| 17 |
+
|
| 18 |
+
import cv2
|
| 19 |
+
from PIL import Image
|
| 20 |
+
|
| 21 |
+
def sample_frames(video_file, num_frames):
|
| 22 |
+
video = cv2.VideoCapture(video_file)
|
| 23 |
+
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 24 |
+
interval = max(1, total_frames // num_frames)
|
| 25 |
+
frames = []
|
| 26 |
+
|
| 27 |
+
for i in range(0, total_frames, interval):
|
| 28 |
+
video.set(cv2.CAP_PROP_POS_FRAMES, i)
|
| 29 |
+
ret, frame = video.read()
|
| 30 |
+
if not ret:
|
| 31 |
+
continue
|
| 32 |
+
pil_img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
| 33 |
+
frames.append(pil_img)
|
| 34 |
+
if len(frames) == num_frames:
|
| 35 |
+
break
|
| 36 |
+
|
| 37 |
+
video.release()
|
| 38 |
+
return frames
|
| 39 |
+
|
| 40 |
+
@spaces.GPU
|
| 41 |
+
def bot_streaming(message, history):
|
| 42 |
+
|
| 43 |
+
txt = message.text
|
| 44 |
+
ext_buffer = f"USER: {txt} ASSISTANT: "
|
| 45 |
+
|
| 46 |
+
if message.files:
|
| 47 |
+
if len(message.files) == 1:
|
| 48 |
+
image = [message.files[0].path]
|
| 49 |
+
# interleaved images or video
|
| 50 |
+
elif len(message.files) > 1:
|
| 51 |
+
image = [msg.path for msg in message.files]
|
| 52 |
+
else:
|
| 53 |
+
|
| 54 |
+
def has_file_data(lst):
|
| 55 |
+
return any(isinstance(item, FileData) for sublist in lst if isinstance(sublist, tuple) for item in sublist)
|
| 56 |
+
|
| 57 |
+
def extract_paths(lst):
|
| 58 |
+
return [item.path for sublist in lst if isinstance(sublist, tuple) for item in sublist if isinstance(item, FileData)]
|
| 59 |
+
|
| 60 |
+
latest_text_only_index = -1
|
| 61 |
+
|
| 62 |
+
for i, item in enumerate(history):
|
| 63 |
+
if all(isinstance(sub_item, str) for sub_item in item):
|
| 64 |
+
latest_text_only_index = i
|
| 65 |
+
|
| 66 |
+
image = [path for i, item in enumerate(history) if i < latest_text_only_index and has_file_data(item) for path in extract_paths(item)]
|
| 67 |
+
|
| 68 |
+
if message.files is None:
|
| 69 |
+
gr.Error("You need to upload an image or video for LLaVA to work.")
|
| 70 |
+
|
| 71 |
+
video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg")
|
| 72 |
+
image_extensions = Image.registered_extensions()
|
| 73 |
+
image_extensions = tuple([ex for ex, f in image_extensions.items()])
|
| 74 |
+
image_list = []
|
| 75 |
+
video_list = []
|
| 76 |
+
|
| 77 |
+
print("media", image)
|
| 78 |
+
if len(image) == 1:
|
| 79 |
+
if image[0].endswith(video_extensions):
|
| 80 |
+
|
| 81 |
+
video_list = sample_frames(image[0], 12)
|
| 82 |
+
|
| 83 |
+
prompt = f"USER: <video> {message.text} ASSISTANT:"
|
| 84 |
+
elif image[0].endswith(image_extensions):
|
| 85 |
+
image_list.append(Image.open(image[0]).convert("RGB"))
|
| 86 |
+
prompt = f"USER: <image> {message.text} ASSISTANT:"
|
| 87 |
+
|
| 88 |
+
elif len(image) > 1:
|
| 89 |
+
user_prompt = message.text
|
| 90 |
+
|
| 91 |
+
for img in image:
|
| 92 |
+
if img.endswith(image_extensions):
|
| 93 |
+
img = Image.open(img).convert("RGB")
|
| 94 |
+
image_list.append(img)
|
| 95 |
+
|
| 96 |
+
elif img.endswith(video_extensions):
|
| 97 |
+
video_list.append(sample_frames(img, 7))
|
| 98 |
+
print(len(video_list[-1]))
|
| 99 |
+
#for frame in sample_frames(img, 6):
|
| 100 |
+
#video_list.append(frame)
|
| 101 |
+
|
| 102 |
+
print("video_list", video_list)
|
| 103 |
+
image_tokens = ""
|
| 104 |
+
video_tokens = ""
|
| 105 |
+
|
| 106 |
+
if image_list != []:
|
| 107 |
+
image_tokens = "<image>" * len(image_list)
|
| 108 |
+
if video_list != []:
|
| 109 |
+
|
| 110 |
+
toks = len(video_list)
|
| 111 |
+
video_tokens = "<video>" * toks
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
prompt = f"USER: {image_tokens}{video_tokens} {user_prompt} ASSISTANT:"
|
| 116 |
+
|
| 117 |
+
print(prompt)
|
| 118 |
+
if image_list != [] and video_list != []:
|
| 119 |
+
inputs = processor(prompt, images=image_list, videos=video_list, return_tensors="pt").to("cuda",torch.float16)
|
| 120 |
+
elif image_list != [] and video_list == []:
|
| 121 |
+
inputs = processor(prompt, images=image_list, return_tensors="pt").to("cuda", torch.float16)
|
| 122 |
+
elif image_list == [] and video_list != []:
|
| 123 |
+
inputs = processor(prompt, videos=video_list, return_tensors="pt").to("cuda", torch.float16)
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
streamer = TextIteratorStreamer(processor, **{"max_new_tokens": 200, "skip_special_tokens": True, "clean_up_tokenization_spaces":True})
|
| 127 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=100)
|
| 128 |
+
generated_text = ""
|
| 129 |
+
|
| 130 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 131 |
+
thread.start()
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
buffer = ""
|
| 136 |
+
for new_text in streamer:
|
| 137 |
+
|
| 138 |
+
buffer += new_text
|
| 139 |
+
|
| 140 |
+
generated_text_without_prompt = buffer[len(ext_buffer):][:-1]
|
| 141 |
+
time.sleep(0.01)
|
| 142 |
+
yield generated_text_without_prompt
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
demo = gr.ChatInterface(fn=bot_streaming, title="VideoLLaVA", examples=[
|
| 146 |
+
{"text": "The input contains two videos, are the cats in this video and this video doing the same thing?", "files":["./cats_1.mp4", "./cats_2.mp4"]},
|
| 147 |
+
{"text": "There are two images in the input. What is the relationship between this image and this image?", "files":["./rococo_1.jpg", "./rococo_2.jpg"]},
|
| 148 |
+
{"text": "What is the cat doing?", "files":["./cat.mp4"]},
|
| 149 |
+
{"text": "How to make this pastry?", "files":["./baklava.png"]}],
|
| 150 |
+
textbox=gr.MultimodalTextbox(file_count="multiple"),
|
| 151 |
+
description="Try [Video-LLaVA](https://huggingface.co/docs/transformers/main/en/model_doc/video_llava) in this demo. Upload an image or a video, and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error. ",
|
| 152 |
+
stop_btn="Stop Generation", multimodal=True)
|
| 153 |
+
demo.launch(debug=True)
|