Spaces:
Runtime error
Runtime error
Create asr_faster_whisper.py
Browse files
tools/extract/asr_faster_whisper.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pathlib import Path
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from faster_whisper import WhisperModel
|
| 5 |
+
|
| 6 |
+
from src.data.chapters import sec_to_hms
|
| 7 |
+
|
| 8 |
+
# Set device and disable TF32 for consistent results
|
| 9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class ASRProcessor:
|
| 13 |
+
"""
|
| 14 |
+
Automatic Speech Recognition processor using WhisperX.
|
| 15 |
+
|
| 16 |
+
Transcribes audio files and returns time-aligned transcription segments.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
def __init__(self, model_name="large-v2", compute_type="float16"):
|
| 20 |
+
self.model_name = model_name
|
| 21 |
+
self.model = WhisperModel(model_name, device=device, compute_type=compute_type)
|
| 22 |
+
|
| 23 |
+
def get_asr(self, audio_file, return_duration=True):
|
| 24 |
+
assert Path(audio_file).exists(), f"File {audio_file} does not exist"
|
| 25 |
+
segments, info = self.model.transcribe(
|
| 26 |
+
audio_file, length_penalty=0.5, condition_on_previous_text=False
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
asr_clean = []
|
| 30 |
+
for segment in segments:
|
| 31 |
+
t = segment.text.strip()
|
| 32 |
+
s = sec_to_hms(segment.start)
|
| 33 |
+
asr_clean.append(f"{s}: {t}")
|
| 34 |
+
|
| 35 |
+
if return_duration:
|
| 36 |
+
return "\n".join(asr_clean) + "\n", info.duration
|
| 37 |
+
else:
|
| 38 |
+
return "\n".join(asr_clean) + "\n"
|