Spaces:
Paused
Paused
upload v1 of Dockerfile, rag, app, requirements and utils
Browse files- Dockerfile +24 -0
- app.py +191 -0
- rag.py +47 -0
- requirements.txt +11 -0
- utils.py +91 -0
Dockerfile
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.10-slim
|
| 2 |
+
|
| 3 |
+
WORKDIR /app
|
| 4 |
+
|
| 5 |
+
# System deps
|
| 6 |
+
RUN apt-get update && apt-get install -y --no-install-recommends \
|
| 7 |
+
build-essential git curl && \
|
| 8 |
+
rm -rf /var/lib/apt/lists/*
|
| 9 |
+
|
| 10 |
+
# Python deps
|
| 11 |
+
COPY requirements.txt .
|
| 12 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 13 |
+
|
| 14 |
+
# App
|
| 15 |
+
COPY . .
|
| 16 |
+
|
| 17 |
+
# Cache tokenizer (optional)
|
| 18 |
+
RUN python -c "from transformers import AutoTokenizer; AutoTokenizer.from_pretrained('mistralai/Mistral-7B-Instruct-v0.3')"
|
| 19 |
+
|
| 20 |
+
ENV HF_HOME=/app/.cache/huggingface
|
| 21 |
+
ENV TRANSFORMERS_CACHE=/app/.cache/huggingface
|
| 22 |
+
|
| 23 |
+
EXPOSE 7860
|
| 24 |
+
CMD ["python", "app.py"]
|
app.py
ADDED
|
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os, re, json, pandas as pd, gradio as gr, torch
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 3 |
+
from typing import Optional
|
| 4 |
+
|
| 5 |
+
from utils import (init_provenance_db, log_provenance, ensure_foundation_year_dir,
|
| 6 |
+
download_pdf, find_best_report_url, DATA_DIR)
|
| 7 |
+
from rag import add_pdf_to_index, get_retriever
|
| 8 |
+
|
| 9 |
+
# ---------- Data & DB ----------
|
| 10 |
+
FOUNDATIONS_CSV = "data/foundations.csv"
|
| 11 |
+
foundations = pd.read_csv(FOUNDATIONS_CSV, dtype={"id":"int"})
|
| 12 |
+
init_provenance_db()
|
| 13 |
+
|
| 14 |
+
# ---------- LLM (local Mistral) ----------
|
| 15 |
+
MODEL_ID = "mistralai/Mistral-7B-Instruct-v0.3"
|
| 16 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 17 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype=torch.float32)
|
| 18 |
+
DEVICE = 0 if torch.cuda.is_available() else -1
|
| 19 |
+
gen = pipeline("text-generation", model=model, tokenizer=tokenizer, device=DEVICE,
|
| 20 |
+
model_kwargs={"torch_dtype": torch.float32}, max_new_tokens=512, do_sample=False)
|
| 21 |
+
|
| 22 |
+
# ---------- MCP tool: fetch_annual_report ----------
|
| 23 |
+
def tool_fetch_annual_report(foundation_id: int, foundation_name: Optional[str] = None,
|
| 24 |
+
year: Optional[int] = None, search_terms: Optional[str] = None,
|
| 25 |
+
save_title: Optional[str] = None) -> dict:
|
| 26 |
+
if not foundation_name:
|
| 27 |
+
row = foundations[foundations["id"] == int(foundation_id)]
|
| 28 |
+
if row.empty:
|
| 29 |
+
return {"status":"error","message":f"Unknown foundation_id={foundation_id}"}
|
| 30 |
+
foundation_name = row.iloc[0]["name"]
|
| 31 |
+
|
| 32 |
+
try:
|
| 33 |
+
best = find_best_report_url(foundation_name, year, search_terms, serpapi_key=os.getenv("SERPAPI_KEY"))
|
| 34 |
+
if not best:
|
| 35 |
+
return {"status":"not_found","message":"No suitable report URL found."}
|
| 36 |
+
url = best.get("link")
|
| 37 |
+
title = save_title or best.get("title") or f"{foundation_name}-annual-report-{year or ''}".strip("-")
|
| 38 |
+
|
| 39 |
+
save_dir = ensure_foundation_year_dir(int(foundation_id), year)
|
| 40 |
+
saved_path = download_pdf(url, save_dir, preferred_name=f"{title}.pdf")
|
| 41 |
+
|
| 42 |
+
# Ingest into FAISS for RAG
|
| 43 |
+
add_pdf_to_index(saved_path, metadata={
|
| 44 |
+
"foundation_id": int(foundation_id),
|
| 45 |
+
"year": year,
|
| 46 |
+
"file_path": saved_path,
|
| 47 |
+
"source_url": url,
|
| 48 |
+
"title": title,
|
| 49 |
+
"doc_type": "annual_report"
|
| 50 |
+
})
|
| 51 |
+
|
| 52 |
+
# provenance
|
| 53 |
+
log_provenance(int(foundation_id), year, title, "annual_report", saved_path, url)
|
| 54 |
+
|
| 55 |
+
return {"status":"ok","url":url,"saved_path":saved_path,"message":f"Stored & indexed: {saved_path}"}
|
| 56 |
+
except Exception as e:
|
| 57 |
+
return {"status":"error","message":str(e)}
|
| 58 |
+
|
| 59 |
+
# ---------- MCP extraction ----------
|
| 60 |
+
def extract_function_call(text: str):
|
| 61 |
+
try:
|
| 62 |
+
data = json.loads(text.strip())
|
| 63 |
+
if isinstance(data, dict) and "function" in data and "parameters" in data:
|
| 64 |
+
return data["function"], data["parameters"]
|
| 65 |
+
except Exception:
|
| 66 |
+
pass
|
| 67 |
+
return None, None
|
| 68 |
+
|
| 69 |
+
def system_prompt(context: str, user_question: str) -> str:
|
| 70 |
+
return f"""You are a Swiss philanthropy assistant with a tool (MCP-style).
|
| 71 |
+
|
| 72 |
+
TOOL CALL FORMAT (STRICT JSON ONLY when calling a tool):
|
| 73 |
+
{{
|
| 74 |
+
"function": "fetch_annual_report",
|
| 75 |
+
"parameters": {{
|
| 76 |
+
"foundation_id": <int>,
|
| 77 |
+
"foundation_name": "<string, optional>",
|
| 78 |
+
"year": <int, optional>,
|
| 79 |
+
"search_terms": "<string, optional>"
|
| 80 |
+
}}
|
| 81 |
+
}}
|
| 82 |
+
|
| 83 |
+
RULES:
|
| 84 |
+
- If you need an annual report PDF URL, output ONLY the JSON tool call above.
|
| 85 |
+
- Prefer precise PDF URLs; the tool will download + index the PDF automatically.
|
| 86 |
+
- If you already have enough info to answer, reply normally (plain text), concise.
|
| 87 |
+
|
| 88 |
+
Context:
|
| 89 |
+
{context}
|
| 90 |
+
|
| 91 |
+
User:
|
| 92 |
+
{user_question}
|
| 93 |
+
|
| 94 |
+
Your response (either JSON tool call or plain text):
|
| 95 |
+
"""
|
| 96 |
+
|
| 97 |
+
def llm(prompt: str) -> str:
|
| 98 |
+
out = gen(prompt)[0]["generated_text"]
|
| 99 |
+
# Return only the new segment after the prompt to avoid echo
|
| 100 |
+
return out[len(prompt):].strip() if out.startswith(prompt) else out.strip()
|
| 101 |
+
|
| 102 |
+
def mcp_orchestrate(user_question: str):
|
| 103 |
+
context = ""
|
| 104 |
+
used_tool = False
|
| 105 |
+
for _ in range(3):
|
| 106 |
+
raw = llm(system_prompt(context, user_question))
|
| 107 |
+
fname, params = extract_function_call(raw)
|
| 108 |
+
if fname == "fetch_annual_report":
|
| 109 |
+
# Fill missing year by heuristic
|
| 110 |
+
if "year" not in params or not params["year"]:
|
| 111 |
+
m = re.search(r"\b(20\d{2}|19\d{2})\b", user_question)
|
| 112 |
+
if m: params["year"] = int(m.group(1))
|
| 113 |
+
res = tool_fetch_annual_report(
|
| 114 |
+
foundation_id=int(params["foundation_id"]),
|
| 115 |
+
foundation_name=params.get("foundation_name"),
|
| 116 |
+
year=params.get("year"),
|
| 117 |
+
search_terms=params.get("search_terms"),
|
| 118 |
+
)
|
| 119 |
+
context += f"\n[tool:fetch_annual_report -> {json.dumps(res, ensure_ascii=False)}]\n"
|
| 120 |
+
used_tool = True
|
| 121 |
+
continue
|
| 122 |
+
else:
|
| 123 |
+
return raw, used_tool
|
| 124 |
+
# Final pass to get a text response after tool
|
| 125 |
+
final = llm(system_prompt(context, user_question))
|
| 126 |
+
return final, used_tool
|
| 127 |
+
|
| 128 |
+
# ---------- RAG answering ----------
|
| 129 |
+
def rag_answer(question: str):
|
| 130 |
+
retriever = get_retriever(k=5)
|
| 131 |
+
# simple manual RAG: fetch docs, stuff into prompt
|
| 132 |
+
docs = retriever.get_relevant_documents(question)
|
| 133 |
+
sources = []
|
| 134 |
+
context = ""
|
| 135 |
+
for d in docs:
|
| 136 |
+
sources.append({
|
| 137 |
+
"page_content": d.page_content[:500],
|
| 138 |
+
"file_path": d.metadata.get("file_path"),
|
| 139 |
+
"page": d.metadata.get("page", "N/A"),
|
| 140 |
+
"year": d.metadata.get("year"),
|
| 141 |
+
"foundation_id": d.metadata.get("foundation_id")
|
| 142 |
+
})
|
| 143 |
+
context += f"\n[Source chunk]\n{d.page_content}\n"
|
| 144 |
+
|
| 145 |
+
prompt = f"""You are answering based ONLY on the context chunks below. If unsure, say you don't know.
|
| 146 |
+
Context:
|
| 147 |
+
{context}
|
| 148 |
+
|
| 149 |
+
Question: {question}
|
| 150 |
+
Answer concisely:"""
|
| 151 |
+
answer = llm(prompt)
|
| 152 |
+
return answer, sources
|
| 153 |
+
|
| 154 |
+
# ---------- Gradio UI ----------
|
| 155 |
+
def ask(user_input: str):
|
| 156 |
+
# 1) Let the model decide if it needs to call the fetch tool
|
| 157 |
+
model_reply, used_tool = mcp_orchestrate(user_input)
|
| 158 |
+
|
| 159 |
+
# 2) Always try a RAG answer (in case the user asked about content)
|
| 160 |
+
rag_resp, sources = rag_answer(user_input)
|
| 161 |
+
|
| 162 |
+
# Decision: if model_reply is a normal sentence (not JSON) and used_tool=False, show RAG answer primarily
|
| 163 |
+
# If used_tool=True, show model confirmation + RAG.
|
| 164 |
+
if used_tool and model_reply:
|
| 165 |
+
header = "✅ Tool used: report fetched/indexed.\n\n"
|
| 166 |
+
final = header + model_reply + "\n\n" + "— RAG answer —\n" + rag_resp
|
| 167 |
+
elif model_reply and not model_reply.strip().startswith("{"):
|
| 168 |
+
final = rag_resp # prioritize grounded RAG
|
| 169 |
+
else:
|
| 170 |
+
final = rag_resp
|
| 171 |
+
|
| 172 |
+
# Pretty-print top sources
|
| 173 |
+
src_lines = []
|
| 174 |
+
for s in sources[:3]:
|
| 175 |
+
src_lines.append(f"- {s.get('file_path')} (page {s.get('page')}, year={s.get('year')}, id={s.get('foundation_id')})")
|
| 176 |
+
if src_lines:
|
| 177 |
+
final += "\n\nSources:\n" + "\n".join(src_lines)
|
| 178 |
+
|
| 179 |
+
return final
|
| 180 |
+
|
| 181 |
+
with gr.Blocks() as demo:
|
| 182 |
+
gr.Markdown("## Swiss Philanthropy Assistant (Mistral + MCP/SerpAPI + RAG/FAISS)")
|
| 183 |
+
gr.Markdown("Ask to fetch a foundation’s annual report (by ID/name/year), then ask questions about its content. PDFs are downloaded, indexed, and queryable.")
|
| 184 |
+
inp = gr.Textbox(label="Your question", placeholder="e.g., Fetch the 2023 annual report for foundation ID 1, then summarize grants by theme.")
|
| 185 |
+
out = gr.Textbox(label="Assistant", lines=18)
|
| 186 |
+
btn = gr.Button("Ask")
|
| 187 |
+
btn.click(ask, inputs=inp, outputs=out)
|
| 188 |
+
inp.submit(ask, inputs=inp, outputs=out)
|
| 189 |
+
|
| 190 |
+
if __name__ == "__main__":
|
| 191 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
rag.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pathlib import Path
|
| 2 |
+
from typing import List, Dict, Any, Optional
|
| 3 |
+
from langchain_community.document_loaders import PyPDFLoader
|
| 4 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 5 |
+
from langchain_community.vectorstores import FAISS
|
| 6 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 7 |
+
|
| 8 |
+
INDEX_DIR = Path("data/vectorstore/faiss_index")
|
| 9 |
+
INDEX_DIR.mkdir(parents=True, exist_ok=True)
|
| 10 |
+
|
| 11 |
+
# Small + strong enough CPU embedding
|
| 12 |
+
EMB_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
|
| 13 |
+
|
| 14 |
+
def load_embeddings():
|
| 15 |
+
return HuggingFaceEmbeddings(model_name=EMB_MODEL)
|
| 16 |
+
|
| 17 |
+
def split_pdf(file_path: str):
|
| 18 |
+
loader = PyPDFLoader(file_path)
|
| 19 |
+
pages = loader.load()
|
| 20 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=64)
|
| 21 |
+
return splitter.split_documents(pages)
|
| 22 |
+
|
| 23 |
+
def _faiss_paths():
|
| 24 |
+
return str(INDEX_DIR / "index.faiss"), str(INDEX_DIR / "index.pkl")
|
| 25 |
+
|
| 26 |
+
def load_or_create_faiss(emb):
|
| 27 |
+
faiss_path, pkl_path = _faiss_paths()
|
| 28 |
+
if Path(faiss_path).exists() and Path(pkl_path).exists():
|
| 29 |
+
return FAISS.load_local(INDEX_DIR, emb, allow_dangerous_deserialization=True)
|
| 30 |
+
# empty new index
|
| 31 |
+
return FAISS.from_texts([""], emb).delete(["0"]) or FAISS(embeddings=emb, index=None, docstore=None, index_to_docstore_id=None)
|
| 32 |
+
|
| 33 |
+
def add_pdf_to_index(file_path: str, metadata: Optional[Dict[str, Any]] = None):
|
| 34 |
+
emb = load_embeddings()
|
| 35 |
+
vectordb = load_or_create_faiss(emb)
|
| 36 |
+
splits = split_pdf(file_path)
|
| 37 |
+
# attach metadata to each chunk
|
| 38 |
+
md = metadata or {}
|
| 39 |
+
for d in splits:
|
| 40 |
+
d.metadata.update(md)
|
| 41 |
+
vectordb.add_documents(splits)
|
| 42 |
+
vectordb.save_local(INDEX_DIR)
|
| 43 |
+
|
| 44 |
+
def get_retriever(k: int = 4):
|
| 45 |
+
emb = load_embeddings()
|
| 46 |
+
vectordb = load_or_create_faiss(emb)
|
| 47 |
+
return vectordb.as_retriever(search_kwargs={"k": k})
|
requirements.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio==4.44.1
|
| 2 |
+
transformers>=4.42.0
|
| 3 |
+
torch>=2.1.0
|
| 4 |
+
pandas
|
| 5 |
+
requests
|
| 6 |
+
python-dateutil
|
| 7 |
+
faiss-cpu
|
| 8 |
+
pypdf
|
| 9 |
+
langchain>=0.2.7
|
| 10 |
+
langchain-community>=0.2.7
|
| 11 |
+
sentence-transformers>=2.6.1
|
utils.py
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os, re, sqlite3, datetime, requests
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
from typing import Optional, List, Dict
|
| 4 |
+
|
| 5 |
+
DATA_DIR = Path("data")
|
| 6 |
+
PROV_DB = "provenance.db"
|
| 7 |
+
|
| 8 |
+
# ---------- SQLite provenance ----------
|
| 9 |
+
def init_provenance_db(db_path: str = PROV_DB):
|
| 10 |
+
conn = sqlite3.connect(db_path)
|
| 11 |
+
c = conn.cursor()
|
| 12 |
+
c.execute("""
|
| 13 |
+
CREATE TABLE IF NOT EXISTS retrieved_docs (
|
| 14 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 15 |
+
foundation_id INTEGER NOT NULL,
|
| 16 |
+
year INTEGER,
|
| 17 |
+
title TEXT,
|
| 18 |
+
doc_type TEXT,
|
| 19 |
+
file_path TEXT,
|
| 20 |
+
source_url TEXT,
|
| 21 |
+
fetched_at TEXT DEFAULT CURRENT_TIMESTAMP
|
| 22 |
+
)""")
|
| 23 |
+
conn.commit(); conn.close()
|
| 24 |
+
|
| 25 |
+
def log_provenance(foundation_id: int, year: Optional[int], title: str,
|
| 26 |
+
doc_type: str, file_path: str, source_url: str,
|
| 27 |
+
db_path: str = PROV_DB):
|
| 28 |
+
conn = sqlite3.connect(db_path); c = conn.cursor()
|
| 29 |
+
c.execute("""INSERT INTO retrieved_docs
|
| 30 |
+
(foundation_id, year, title, doc_type, file_path, source_url, fetched_at)
|
| 31 |
+
VALUES (?,?,?,?,?,?,?)""",
|
| 32 |
+
(foundation_id, year, title, doc_type, file_path, source_url,
|
| 33 |
+
datetime.datetime.now().isoformat()))
|
| 34 |
+
conn.commit(); conn.close()
|
| 35 |
+
|
| 36 |
+
# ---------- Filesystem ----------
|
| 37 |
+
def safe_filename(name: str) -> str:
|
| 38 |
+
name = re.sub(r"[^\w\-. ]+", "_", name)
|
| 39 |
+
return re.sub(r"\s+", "_", name).strip("_")
|
| 40 |
+
|
| 41 |
+
def ensure_foundation_year_dir(fid: int, year: Optional[int]) -> Path:
|
| 42 |
+
base = DATA_DIR / f"{fid}_data"
|
| 43 |
+
if year: base = base / str(year)
|
| 44 |
+
base.mkdir(parents=True, exist_ok=True)
|
| 45 |
+
return base
|
| 46 |
+
|
| 47 |
+
def download_pdf(url: str, save_dir: Path, preferred_name: Optional[str] = None) -> str:
|
| 48 |
+
filename = preferred_name or url.split("/")[-1].split("?")[0]
|
| 49 |
+
if not filename.lower().endswith(".pdf"):
|
| 50 |
+
filename += ".pdf"
|
| 51 |
+
filename = safe_filename(filename)
|
| 52 |
+
target = save_dir / filename
|
| 53 |
+
r = requests.get(url, stream=True, timeout=30); r.raise_for_status()
|
| 54 |
+
with open(target, "wb") as f:
|
| 55 |
+
for chunk in r.iter_content(8192):
|
| 56 |
+
if chunk: f.write(chunk)
|
| 57 |
+
return str(target)
|
| 58 |
+
|
| 59 |
+
# ---------- SerpAPI search ----------
|
| 60 |
+
def serpapi_search(query: str, num_results: int = 20, serpapi_key: Optional[str] = None) -> List[Dict]:
|
| 61 |
+
key = serpapi_key or os.getenv("SERPAPI_KEY")
|
| 62 |
+
if not key:
|
| 63 |
+
raise RuntimeError("SERPAPI_KEY not set (add it in HF Space Secrets).")
|
| 64 |
+
params = {"engine": "google", "q": query, "num": num_results, "api_key": key}
|
| 65 |
+
resp = requests.get("https://serpapi.com/search", params=params, timeout=20)
|
| 66 |
+
resp.raise_for_status()
|
| 67 |
+
return resp.json().get("organic_results", [])
|
| 68 |
+
|
| 69 |
+
def _is_pdf_link(link: str) -> bool:
|
| 70 |
+
l = link.lower()
|
| 71 |
+
return l.endswith(".pdf") or (".pdf" in l)
|
| 72 |
+
|
| 73 |
+
def score_candidate(item: Dict, foundation_name: str, year: Optional[int]) -> float:
|
| 74 |
+
title = (item.get("title") or "").lower()
|
| 75 |
+
link = (item.get("link") or "").lower()
|
| 76 |
+
score = 0.0
|
| 77 |
+
if any(k in title for k in ["annual", "report", "jahresbericht", "rapport", "rapport annuel"]): score += 2
|
| 78 |
+
if foundation_name.lower()[:10] in title or foundation_name.lower()[:10] in link: score += 1.5
|
| 79 |
+
if year and (str(year) in title or str(year) in link): score += 1.5
|
| 80 |
+
if _is_pdf_link(link): score += 1.0
|
| 81 |
+
return score
|
| 82 |
+
|
| 83 |
+
def find_best_report_url(foundation_name: str, year: Optional[int], extra_terms: Optional[str], serpapi_key: Optional[str]) -> Optional[Dict]:
|
| 84 |
+
q = f'{foundation_name} annual report'
|
| 85 |
+
if year: q += f' {year}'
|
| 86 |
+
if extra_terms: q += f' {extra_terms}'
|
| 87 |
+
q += ' filetype:pdf site:org | site:ch | site:foundation | site:stiftung | site:fondation'
|
| 88 |
+
results = serpapi_search(q, num_results=20, serpapi_key=serpapi_key)
|
| 89 |
+
if not results: return None
|
| 90 |
+
ranked = sorted(results, key=lambda r: score_candidate(r, foundation_name, year), reverse=True)
|
| 91 |
+
return ranked[0]
|