File size: 7,942 Bytes
429f957
 
 
af987ea
429f957
 
 
de389b7
429f957
 
 
 
 
 
 
 
 
 
de389b7
 
429f957
af987ea
 
 
 
7a45593
 
 
af987ea
 
 
 
 
 
7a45593
 
 
af987ea
 
7a45593
 
af987ea
 
 
 
 
7a45593
 
 
 
af987ea
 
 
7a45593
af987ea
 
7a45593
af987ea
 
 
7a45593
 
 
 
 
af987ea
 
 
 
429f957
7a45593
 
 
429f957
7bf9779
429f957
 
 
 
de389b7
 
 
 
 
 
 
429f957
 
 
 
7a45593
 
 
 
429f957
7a45593
 
429f957
 
7a45593
 
 
 
 
 
 
 
 
429f957
7a45593
 
 
 
 
 
 
 
429f957
 
7a45593
 
 
429f957
 
 
7a45593
429f957
 
7a45593
 
 
429f957
 
 
7a45593
429f957
 
7a45593
 
 
 
 
 
 
 
429f957
7a45593
429f957
1d7adfe
7a45593
429f957
7a45593
 
429f957
 
 
 
 
7a45593
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af987ea
 
7a45593
 
429f957
7a45593
 
 
429f957
7a45593
 
 
 
 
 
 
 
 
 
1d7adfe
7a45593
429f957
 
 
 
 
 
 
 
 
 
 
7a45593
429f957
 
7a45593
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import os
import pandas as pd
import numpy as np
import gzip
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import gradio as gr
from together import Together

# Load pre-trained Sentence Transformer model
model = SentenceTransformer('LaBSE')

# Load questions and answers from the CSV file
df = pd.read_csv('combined_questions_and_answers.csv')

# Encode all questions in the dataset
question_embeddings = model.encode(df['Question'].tolist())

# Together API setup
client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))

def compressed_length(s):
    return len(gzip.compress(s.encode('utf-8')))

def ncd(x, y):
    """
    Normalized Compression Distance for strings x and y.
    """
    Cx = compressed_length(x)
    Cy = compressed_length(y)
    Cxy = compressed_length(x + " " + y)
    return (Cxy - min(Cx, Cy)) / max(Cx, Cy)

def normalize_scores(scores, reverse=False):
    """
    Scale a list of scores to [0,1], optionally reversing (1 - x).
    """
    min_score = min(scores)
    max_score = max(scores)
    if max_score == min_score:
        return [0] * len(scores)
    if reverse:
        return [(max_score - x) / (max_score - min_score) for x in scores]
    return [(x - min_score) / (max_score - min_score) for x in scores]

def hybrid_retrieval(query, passages, embeddings, alpha=0.7, beta=0.3):
    """
    Combine cosine similarity (SentenceTransformer) and
    Normalized Compression Distance (NCD) for retrieval.
    """
    query_embedding = model.encode(query)
    cosine_similarities = cosine_similarity([query_embedding], embeddings)[0]
    
    # Normalize
    normalized_cosine_similarities = normalize_scores(cosine_similarities)
    
    # Calculate NCD
    ncd_values = [ncd(query, passage) for passage in passages]
    normalized_ncd_values = normalize_scores(ncd_values, reverse=True)
    
    # Combine
    final_scores = [
        alpha * cos_sim + beta * ncd_sim
        for cos_sim, ncd_sim in zip(normalized_cosine_similarities, normalized_ncd_values)
    ]
    
    most_similar_index = np.argmax(final_scores)
    return most_similar_index, cosine_similarities[most_similar_index], ncd_values[most_similar_index], final_scores[most_similar_index]

def llama_query(prompt, system_content):
    """
    Send a prompt to the Together LLaMa model and return the response.
    """
    response = client.chat.completions.create(
        model="meta-llama/Llama-3.3-70B-Instruct-Turbo",
        messages=[
            {"role": "system", "content": system_content},
            {"role": "user", "content": prompt}
        ],
        max_tokens=512,
        temperature=0.7,
        top_p=0.7,
        top_k=50,
        repetition_penalty=1,
        stop=["<|eot_id|>", "<|eom_id|>"],
        stream=False
    )
    return response.choices[0].message.content

def check_blood_donation_relevance(question):
    """
    Use LLaMa to check whether 'question' is about blood donation.
    """
    prompt = f"Is the following question related to blood donation? Answer ONLY with 'Yes' or 'No': {question}"
    system_content = "You are an assistant that determines if a question is related to blood donation."
    response = llama_query(prompt, system_content).strip().lower()
    return response == 'yes'

def detect_language(text):
    """
    Use LLaMa to detect language (English or Swahili).
    Returns 'swahili' or 'english'.
    """
    prompt = (
        "Detect the language of this text. If it's Swahili, return 'Swahili'. "
        "If it's English, return 'English'. Here's the text:\n\n"
        f"{text}"
    )
    system_content = "You are a language detection assistant."
    response = llama_query(prompt, system_content).strip().lower()
    # Attempt to match strictly 'swahili' or 'english' from the response
    if "swahili" in response:
        return "swahili"
    if "english" in response:
        return "english"
    # Fallback: default to English
    return "english"

def translate_to_english(text):
    """
    Translate Swahili text to English using LLaMa.
    """
    prompt = f"Translate the following Swahili text to English: {text}"
    system_content = "You are a translation assistant that translates from Swahili to English."
    response = llama_query(prompt, system_content)
    return response.strip()

def translate_to_swahili(text):
    """
    Translate any text to simple Swahili using LLaMa.
    """
    prompt = f"Translate the following text to simple Swahili, avoiding difficult words: {text}"
    system_content = "You are a translation assistant that translates to simple Swahili."
    response = llama_query(prompt, system_content)
    return response.strip()

def refine_answer(question, retrieved_answer):
    """
    Refine the retrieved answer, making it more relevant and natural.
    """
    prompt = (
        f"Question: {question}\n\n"
        f"Retrieved Answer: {retrieved_answer}\n\n"
        "Please refine the retrieved answer so it's direct, clear, and specifically addresses the question."
    )
    system_content = "You are an assistant that refines answers to make them more relevant and natural."
    return llama_query(prompt, system_content).strip()

def get_answer(user_question, threshold=0.3):
    # 1) Detect user language
    language = detect_language(user_question)
    
    # 2) Convert user question to English for checking & retrieval
    if language == 'swahili':
        english_question = translate_to_english(user_question)
    else:
        english_question = user_question

    # 3) Check if the question is about blood donation using LLaMa
    is_blood_related = check_blood_donation_relevance(english_question)
    
    if not is_blood_related:
        # Off-topic response
        off_topic_message = "I'm sorry, but your question doesn't seem to be related to blood donation. Could you please ask a question about blood donation?"
        if language == 'swahili':
            off_topic_message = translate_to_swahili(off_topic_message)
        return off_topic_message, 0.0
    
    # If it is about blood donation, proceed with hybrid retrieval
    index, cosine_sim, ncd_value, final_score = hybrid_retrieval(
        english_question, 
        df['Question'].tolist(), 
        question_embeddings
    )
    
    # 4) If retrieval confidence is high enough, refine the CSV answer
    if final_score > threshold:
        retrieved_answer = df.iloc[index]['Answer']
        refined_answer_english = refine_answer(english_question, retrieved_answer)
        # Translate back to user language if needed
        if language == 'swahili':
            return translate_to_swahili(refined_answer_english), final_score
        else:
            return refined_answer_english, final_score
    else:
        # 5) If retrieval is below threshold, ask LLaMa for a general blood-donation-related answer
        llama_response_english = llama_query(
            f"Please provide a concise, accurate answer about blood donation for the question: {english_question}",
            "You are an assistant knowledgeable about blood donation. Provide concise, accurate answers."
        )
        llama_response_english = llama_response_english.strip()
        
        # Translate back to user language if needed
        if language == 'swahili':
            return translate_to_swahili(llama_response_english), final_score
        else:
            return llama_response_english, final_score

# Gradio app
def gradio_app(user_question):
    answer, similarity = get_answer(user_question)
    return f"Similarity: {similarity:.2f}\nAnswer: {answer}"

iface = gr.Interface(
    fn=gradio_app,
    inputs=gr.Textbox(label="Enter your question"),
    outputs=gr.Textbox(label="Answer"),
    title="Blood Donation Q&A",
    description="Ask questions about blood donation in English or Swahili. The system first checks if it's related to blood donation."
)

iface.launch()