Spaces:
Build error
Build error
Rename app.py to main.py
Browse files
app.py
DELETED
|
@@ -1,7 +0,0 @@
|
|
| 1 |
-
# app.py
|
| 2 |
-
from main import app
|
| 3 |
-
|
| 4 |
-
# For Hugging Face Spaces
|
| 5 |
-
if __name__ == "__main__":
|
| 6 |
-
import uvicorn
|
| 7 |
-
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
main.py
ADDED
|
@@ -0,0 +1,463 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fasthtml.common import *
|
| 2 |
+
from fastai.vision.all import *
|
| 3 |
+
import os
|
| 4 |
+
import time
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
import urllib.request
|
| 7 |
+
from io import BytesIO
|
| 8 |
+
|
| 9 |
+
# Create necessary directories
|
| 10 |
+
os.makedirs('uploads', exist_ok=True)
|
| 11 |
+
|
| 12 |
+
# Function to load model - with fallback for testing
|
| 13 |
+
def load_model():
|
| 14 |
+
try:
|
| 15 |
+
model_path = 'levit.pkl'
|
| 16 |
+
# Check if model exists, if not try to download a sample model (for demo purposes)
|
| 17 |
+
if not os.path.exists(model_path):
|
| 18 |
+
print("Model not found. This is just for testing purposes.")
|
| 19 |
+
# In a real deployment, you'd want to handle this more gracefully
|
| 20 |
+
return None, ['class1', 'class2', 'class3']
|
| 21 |
+
|
| 22 |
+
learn = load_learner(model_path)
|
| 23 |
+
labels = learn.dls.vocab
|
| 24 |
+
print(f"Model loaded successfully with labels: {labels}")
|
| 25 |
+
return learn, labels
|
| 26 |
+
except Exception as e:
|
| 27 |
+
print(f"Error loading model: {e}")
|
| 28 |
+
# Fallback for testing
|
| 29 |
+
return None, ['class1', 'class2', 'class3']
|
| 30 |
+
|
| 31 |
+
# Load the model at startup
|
| 32 |
+
learn, labels = load_model()
|
| 33 |
+
|
| 34 |
+
# Create a FastHTML app
|
| 35 |
+
app, rt = fast_app()
|
| 36 |
+
|
| 37 |
+
# Define the prediction function
|
| 38 |
+
def predict(img_bytes):
|
| 39 |
+
try:
|
| 40 |
+
# If no model is loaded, return mock predictions for testing
|
| 41 |
+
if learn is None:
|
| 42 |
+
import random
|
| 43 |
+
mock_results = {label: random.random() for label in labels}
|
| 44 |
+
# Sort by values and normalize to ensure they sum to 1
|
| 45 |
+
total = sum(mock_results.values())
|
| 46 |
+
return {k: v/total for k, v in sorted(mock_results.items(), key=lambda x: x[1], reverse=True)}
|
| 47 |
+
|
| 48 |
+
# Real prediction with the model
|
| 49 |
+
img = PILImage.create(BytesIO(img_bytes))
|
| 50 |
+
img = img.resize((512, 512))
|
| 51 |
+
pred, pred_idx, probs = learn.predict(img)
|
| 52 |
+
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
| 53 |
+
except Exception as e:
|
| 54 |
+
print(f"Prediction error: {e}")
|
| 55 |
+
return {"Error": 1.0}
|
| 56 |
+
|
| 57 |
+
# Main page route
|
| 58 |
+
@rt("/")
|
| 59 |
+
def get():
|
| 60 |
+
# Create a form for image upload
|
| 61 |
+
upload_form = Form(
|
| 62 |
+
Div(
|
| 63 |
+
H1("FastAI Image Classifier"),
|
| 64 |
+
P("Upload an image to classify it using a pre-trained model."),
|
| 65 |
+
cls="instructions"
|
| 66 |
+
),
|
| 67 |
+
Div(
|
| 68 |
+
Input(type="file", name="image", accept="image/*", required=True,
|
| 69 |
+
hx_indicator="#loading"),
|
| 70 |
+
Button("Classify", type="submit"),
|
| 71 |
+
cls="upload-controls"
|
| 72 |
+
),
|
| 73 |
+
hx_post="/predict",
|
| 74 |
+
hx_target="#result",
|
| 75 |
+
hx_swap="innerHTML",
|
| 76 |
+
hx_encoding="multipart/form-data",
|
| 77 |
+
id="upload-form"
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
# Add loading indicator
|
| 81 |
+
loading = Div(
|
| 82 |
+
P("Processing your image..."),
|
| 83 |
+
id="loading",
|
| 84 |
+
cls="htmx-indicator"
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
# Container for results
|
| 88 |
+
result_container = Div(id="result", cls="result-container")
|
| 89 |
+
|
| 90 |
+
# Example section
|
| 91 |
+
examples = Div(
|
| 92 |
+
H2("Or try an example:"),
|
| 93 |
+
A("Example Image", href="#",
|
| 94 |
+
hx_get="/predict_example",
|
| 95 |
+
hx_target="#result",
|
| 96 |
+
hx_indicator="#loading"),
|
| 97 |
+
cls="examples-section"
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
# CSS styles
|
| 101 |
+
css = """
|
| 102 |
+
:root {
|
| 103 |
+
--primary-color: #3498db;
|
| 104 |
+
--secondary-color: #2c3e50;
|
| 105 |
+
--background-color: #f9f9f9;
|
| 106 |
+
--error-color: #e74c3c;
|
| 107 |
+
--shadow-color: rgba(0, 0, 0, 0.1);
|
| 108 |
+
--border-color: #ddd;
|
| 109 |
+
}
|
| 110 |
+
|
| 111 |
+
body {
|
| 112 |
+
font-family: system-ui, -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, 'Open Sans', 'Helvetica Neue', sans-serif;
|
| 113 |
+
line-height: 1.6;
|
| 114 |
+
color: #333;
|
| 115 |
+
max-width: 800px;
|
| 116 |
+
margin: 0 auto;
|
| 117 |
+
padding: 20px;
|
| 118 |
+
background-color: #fff;
|
| 119 |
+
}
|
| 120 |
+
|
| 121 |
+
h1 {
|
| 122 |
+
color: var(--secondary-color);
|
| 123 |
+
margin-bottom: 1rem;
|
| 124 |
+
font-weight: 600;
|
| 125 |
+
}
|
| 126 |
+
|
| 127 |
+
h2 {
|
| 128 |
+
color: var(--primary-color);
|
| 129 |
+
margin-top: 1.5rem;
|
| 130 |
+
font-weight: 500;
|
| 131 |
+
}
|
| 132 |
+
|
| 133 |
+
.instructions {
|
| 134 |
+
margin-bottom: 20px;
|
| 135 |
+
}
|
| 136 |
+
|
| 137 |
+
.upload-controls {
|
| 138 |
+
display: flex;
|
| 139 |
+
gap: 10px;
|
| 140 |
+
margin-bottom: 30px;
|
| 141 |
+
align-items: center;
|
| 142 |
+
flex-wrap: wrap;
|
| 143 |
+
}
|
| 144 |
+
|
| 145 |
+
button {
|
| 146 |
+
background-color: var(--primary-color);
|
| 147 |
+
color: white;
|
| 148 |
+
border: none;
|
| 149 |
+
padding: 10px 15px;
|
| 150 |
+
border-radius: 4px;
|
| 151 |
+
cursor: pointer;
|
| 152 |
+
transition: background-color 0.3s;
|
| 153 |
+
font-weight: 500;
|
| 154 |
+
}
|
| 155 |
+
|
| 156 |
+
button:hover {
|
| 157 |
+
background-color: #2980b9;
|
| 158 |
+
}
|
| 159 |
+
|
| 160 |
+
input[type="file"] {
|
| 161 |
+
padding: 10px;
|
| 162 |
+
border: 1px solid var(--border-color);
|
| 163 |
+
border-radius: 4px;
|
| 164 |
+
flex-grow: 1;
|
| 165 |
+
}
|
| 166 |
+
|
| 167 |
+
#upload-form {
|
| 168 |
+
margin-bottom: 40px;
|
| 169 |
+
padding: 20px;
|
| 170 |
+
border-radius: 8px;
|
| 171 |
+
background-color: var(--background-color);
|
| 172 |
+
box-shadow: 0 2px 10px var(--shadow-color);
|
| 173 |
+
}
|
| 174 |
+
|
| 175 |
+
.result-container {
|
| 176 |
+
margin-top: 20px;
|
| 177 |
+
}
|
| 178 |
+
|
| 179 |
+
.prediction-results {
|
| 180 |
+
margin-top: 20px;
|
| 181 |
+
padding: 20px;
|
| 182 |
+
border: 1px solid var(--border-color);
|
| 183 |
+
border-radius: 8px;
|
| 184 |
+
background-color: var(--background-color);
|
| 185 |
+
box-shadow: 0 2px 8px var(--shadow-color);
|
| 186 |
+
}
|
| 187 |
+
|
| 188 |
+
.result-image {
|
| 189 |
+
max-width: 100%;
|
| 190 |
+
height: auto;
|
| 191 |
+
border-radius: 8px;
|
| 192 |
+
box-shadow: 0 2px 5px var(--shadow-color);
|
| 193 |
+
margin-bottom: 20px;
|
| 194 |
+
display: block;
|
| 195 |
+
}
|
| 196 |
+
|
| 197 |
+
.prediction-list {
|
| 198 |
+
margin-top: 15px;
|
| 199 |
+
}
|
| 200 |
+
|
| 201 |
+
.prediction-item {
|
| 202 |
+
padding: 12px 15px;
|
| 203 |
+
margin-bottom: 10px;
|
| 204 |
+
background-color: white;
|
| 205 |
+
border-radius: 6px;
|
| 206 |
+
box-shadow: 0 1px 3px var(--shadow-color);
|
| 207 |
+
}
|
| 208 |
+
|
| 209 |
+
.label-text {
|
| 210 |
+
margin-bottom: 8px;
|
| 211 |
+
font-weight: 500;
|
| 212 |
+
display: flex;
|
| 213 |
+
justify-content: space-between;
|
| 214 |
+
}
|
| 215 |
+
|
| 216 |
+
.examples-section {
|
| 217 |
+
margin-top: 30px;
|
| 218 |
+
padding-top: 20px;
|
| 219 |
+
border-top: 1px solid var(--border-color);
|
| 220 |
+
}
|
| 221 |
+
|
| 222 |
+
.htmx-indicator {
|
| 223 |
+
display: none;
|
| 224 |
+
padding: 15px;
|
| 225 |
+
background-color: #e8f4fc;
|
| 226 |
+
border-radius: 6px;
|
| 227 |
+
text-align: center;
|
| 228 |
+
margin: 15px 0;
|
| 229 |
+
box-shadow: 0 1px 3px var(--shadow-color);
|
| 230 |
+
}
|
| 231 |
+
|
| 232 |
+
.htmx-request .htmx-indicator {
|
| 233 |
+
display: block;
|
| 234 |
+
}
|
| 235 |
+
|
| 236 |
+
.progress-bar {
|
| 237 |
+
height: 10px;
|
| 238 |
+
background-color: #f0f0f0;
|
| 239 |
+
border-radius: 5px;
|
| 240 |
+
margin: 5px 0;
|
| 241 |
+
overflow: hidden;
|
| 242 |
+
}
|
| 243 |
+
|
| 244 |
+
.progress-fill {
|
| 245 |
+
height: 100%;
|
| 246 |
+
background-color: var(--primary-color);
|
| 247 |
+
width: 0;
|
| 248 |
+
transition: width 0.5s ease;
|
| 249 |
+
}
|
| 250 |
+
|
| 251 |
+
.error-message {
|
| 252 |
+
color: var(--error-color);
|
| 253 |
+
padding: 15px;
|
| 254 |
+
border: 1px solid var(--error-color);
|
| 255 |
+
border-radius: 5px;
|
| 256 |
+
background-color: #fde9e7;
|
| 257 |
+
}
|
| 258 |
+
|
| 259 |
+
a {
|
| 260 |
+
color: var(--primary-color);
|
| 261 |
+
text-decoration: none;
|
| 262 |
+
font-weight: 500;
|
| 263 |
+
}
|
| 264 |
+
|
| 265 |
+
a:hover {
|
| 266 |
+
text-decoration: underline;
|
| 267 |
+
}
|
| 268 |
+
|
| 269 |
+
/* Responsive styling */
|
| 270 |
+
@media (max-width: 600px) {
|
| 271 |
+
.upload-controls {
|
| 272 |
+
flex-direction: column;
|
| 273 |
+
align-items: stretch;
|
| 274 |
+
}
|
| 275 |
+
|
| 276 |
+
button {
|
| 277 |
+
width: 100%;
|
| 278 |
+
}
|
| 279 |
+
}
|
| 280 |
+
|
| 281 |
+
.model-info {
|
| 282 |
+
font-size: 0.9rem;
|
| 283 |
+
color: #666;
|
| 284 |
+
margin-top: 40px;
|
| 285 |
+
padding-top: 20px;
|
| 286 |
+
border-top: 1px solid var(--border-color);
|
| 287 |
+
}
|
| 288 |
+
"""
|
| 289 |
+
|
| 290 |
+
# Model information
|
| 291 |
+
model_info = Div(
|
| 292 |
+
P(f"Model: {'Model loaded successfully' if learn is not None else 'Demo mode - no model loaded'}"),
|
| 293 |
+
P(f"Classes: {', '.join(labels)}"),
|
| 294 |
+
cls="model-info"
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
return Titled("FastAI Image Classifier",
|
| 298 |
+
upload_form,
|
| 299 |
+
loading,
|
| 300 |
+
result_container,
|
| 301 |
+
examples,
|
| 302 |
+
model_info,
|
| 303 |
+
Style(css))
|
| 304 |
+
|
| 305 |
+
# Prediction route for uploaded images
|
| 306 |
+
@rt("/predict")
|
| 307 |
+
async def post(image: UploadFile):
|
| 308 |
+
try:
|
| 309 |
+
# Read the uploaded image
|
| 310 |
+
image_bytes = await image.read()
|
| 311 |
+
|
| 312 |
+
# Generate a unique filename to avoid conflicts
|
| 313 |
+
from datetime import datetime
|
| 314 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 315 |
+
safe_filename = f"{timestamp}_{image.filename.replace(' ', '_')}"
|
| 316 |
+
|
| 317 |
+
# Save the image temporarily
|
| 318 |
+
img_path = f"uploads/{safe_filename}"
|
| 319 |
+
with open(img_path, "wb") as f:
|
| 320 |
+
f.write(image_bytes)
|
| 321 |
+
|
| 322 |
+
# Add a small delay to make the loading indicator visible
|
| 323 |
+
time.sleep(0.5)
|
| 324 |
+
|
| 325 |
+
# Make a prediction
|
| 326 |
+
results = predict(image_bytes)
|
| 327 |
+
|
| 328 |
+
# Sort results by probability
|
| 329 |
+
sorted_results = dict(sorted(results.items(), key=lambda x: x[1], reverse=True))
|
| 330 |
+
top_results = dict(list(sorted_results.items())[:3])
|
| 331 |
+
|
| 332 |
+
# Create prediction items with progress bars
|
| 333 |
+
prediction_items = []
|
| 334 |
+
for label, prob in top_results.items():
|
| 335 |
+
percentage = int(prob * 100)
|
| 336 |
+
prediction_items.append(
|
| 337 |
+
Div(
|
| 338 |
+
Div(
|
| 339 |
+
Span(f"{label}"),
|
| 340 |
+
Span(f"{percentage}%"),
|
| 341 |
+
cls="label-text"
|
| 342 |
+
),
|
| 343 |
+
Div(
|
| 344 |
+
Div(cls="progress-fill", style=f"width: {percentage}%;"),
|
| 345 |
+
cls="progress-bar"
|
| 346 |
+
),
|
| 347 |
+
cls="prediction-item"
|
| 348 |
+
)
|
| 349 |
+
)
|
| 350 |
+
|
| 351 |
+
# Create result HTML
|
| 352 |
+
result_html = Div(
|
| 353 |
+
H2("Prediction Results:"),
|
| 354 |
+
Img(src=f"/image/{safe_filename}", cls="result-image", alt="Uploaded image"),
|
| 355 |
+
Div(*prediction_items, cls="prediction-list"),
|
| 356 |
+
cls="prediction-results"
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
+
return result_html
|
| 360 |
+
|
| 361 |
+
except Exception as e:
|
| 362 |
+
return Div(
|
| 363 |
+
H2("Error"),
|
| 364 |
+
P(f"An error occurred during prediction: {str(e)}"),
|
| 365 |
+
cls="error-message"
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
# Route to serve saved images
|
| 369 |
+
@rt("/image/{filename}")
|
| 370 |
+
def get(filename: str):
|
| 371 |
+
file_path = f"uploads/{filename}"
|
| 372 |
+
if os.path.exists(file_path):
|
| 373 |
+
return FileResponse(file_path)
|
| 374 |
+
else:
|
| 375 |
+
return Div(
|
| 376 |
+
H2("Error"),
|
| 377 |
+
P("Image not found."),
|
| 378 |
+
cls="error-message"
|
| 379 |
+
)
|
| 380 |
+
|
| 381 |
+
# Route for example image
|
| 382 |
+
@rt("/predict_example")
|
| 383 |
+
def get():
|
| 384 |
+
try:
|
| 385 |
+
# Path to example image
|
| 386 |
+
example_path = "image.jpg"
|
| 387 |
+
|
| 388 |
+
# Check if example image exists
|
| 389 |
+
if os.path.exists(example_path):
|
| 390 |
+
with open(example_path, "rb") as f:
|
| 391 |
+
image_bytes = f.read()
|
| 392 |
+
|
| 393 |
+
# Save the example image to uploads
|
| 394 |
+
example_name = "example.jpg"
|
| 395 |
+
with open(f"uploads/{example_name}", "wb") as f:
|
| 396 |
+
f.write(image_bytes)
|
| 397 |
+
|
| 398 |
+
# Add a small delay to make the loading indicator visible
|
| 399 |
+
time.sleep(0.5)
|
| 400 |
+
|
| 401 |
+
# Make a prediction
|
| 402 |
+
results = predict(image_bytes)
|
| 403 |
+
|
| 404 |
+
# Sort results by probability
|
| 405 |
+
sorted_results = dict(sorted(results.items(), key=lambda x: x[1], reverse=True))
|
| 406 |
+
top_results = dict(list(sorted_results.items())[:3])
|
| 407 |
+
|
| 408 |
+
# Create prediction items with progress bars
|
| 409 |
+
prediction_items = []
|
| 410 |
+
for label, prob in top_results.items():
|
| 411 |
+
percentage = int(prob * 100)
|
| 412 |
+
prediction_items.append(
|
| 413 |
+
Div(
|
| 414 |
+
Div(
|
| 415 |
+
Span(f"{label}"),
|
| 416 |
+
Span(f"{percentage}%"),
|
| 417 |
+
cls="label-text"
|
| 418 |
+
),
|
| 419 |
+
Div(
|
| 420 |
+
Div(cls="progress-fill", style=f"width: {percentage}%;"),
|
| 421 |
+
cls="progress-bar"
|
| 422 |
+
),
|
| 423 |
+
cls="prediction-item"
|
| 424 |
+
)
|
| 425 |
+
)
|
| 426 |
+
|
| 427 |
+
# Create result HTML
|
| 428 |
+
result_html = Div(
|
| 429 |
+
H2("Prediction Results:"),
|
| 430 |
+
Img(src=f"/image/{example_name}", cls="result-image", alt="Example image"),
|
| 431 |
+
Div(*prediction_items, cls="prediction-list"),
|
| 432 |
+
P("This is a demonstration using the provided example image.", style="font-style: italic; color: #666;"),
|
| 433 |
+
cls="prediction-results"
|
| 434 |
+
)
|
| 435 |
+
|
| 436 |
+
return result_html
|
| 437 |
+
else:
|
| 438 |
+
return Div(
|
| 439 |
+
H2("Example Not Found"),
|
| 440 |
+
P("The example image 'image.jpg' was not found. Please try uploading your own image."),
|
| 441 |
+
cls="error-message"
|
| 442 |
+
)
|
| 443 |
+
|
| 444 |
+
except Exception as e:
|
| 445 |
+
return Div(
|
| 446 |
+
H2("Error"),
|
| 447 |
+
P(f"An error occurred with the example: {str(e)}"),
|
| 448 |
+
cls="error-message"
|
| 449 |
+
)
|
| 450 |
+
|
| 451 |
+
# Health check endpoint (useful for Docker/Kubernetes)
|
| 452 |
+
@rt("/health")
|
| 453 |
+
def get():
|
| 454 |
+
return {"status": "ok", "model_loaded": learn is not None}
|
| 455 |
+
|
| 456 |
+
# Run the app
|
| 457 |
+
if __name__ == "__main__":
|
| 458 |
+
# Use environment variables if available (common in Docker)
|
| 459 |
+
host = os.environ.get("HOST", "0.0.0.0")
|
| 460 |
+
port = int(os.environ.get("PORT", 8000))
|
| 461 |
+
|
| 462 |
+
print(f"Starting FastHTML server on {host}:{port}")
|
| 463 |
+
serve(app=app, host=host, port=port)
|