Add application file
Browse files
README.md
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
---
|
| 2 |
title: Quotes
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: streamlit
|
| 7 |
sdk_version: 1.28.1
|
| 8 |
app_file: app.py
|
|
|
|
| 1 |
---
|
| 2 |
title: Quotes
|
| 3 |
+
emoji: 🪶
|
| 4 |
+
colorFrom: green
|
| 5 |
+
colorTo: blue
|
| 6 |
sdk: streamlit
|
| 7 |
sdk_version: 1.28.1
|
| 8 |
app_file: app.py
|
app.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from sentence_transformers import SentenceTransformer
|
| 3 |
+
import datasets
|
| 4 |
+
|
| 5 |
+
x = st.slider('Select a value')
|
| 6 |
+
st.write(x, 'squared is', x * x)
|
| 7 |
+
|
| 8 |
+
st.sidebar.text_input("Type your quote here")
|
| 9 |
+
|
| 10 |
+
dataset = datasets.load_dataset('A-Roucher/english_historical_quotes')['train']
|
| 11 |
+
|
| 12 |
+
model_name = "sentence-transformers/all-MiniLM-L6-v2" # BAAI/bge-small-en-v1.5" # "Cohere/Cohere-embed-english-light-v3.0" # "sentence-transformers/all-MiniLM-L6-v2"
|
| 13 |
+
|
| 14 |
+
encoder = SentenceTransformer(model_name)
|
| 15 |
+
embeddings = encoder.encode(
|
| 16 |
+
dataset["quote"],
|
| 17 |
+
batch_size=8,
|
| 18 |
+
show_progress_bar=True,
|
| 19 |
+
convert_to_numpy=True,
|
| 20 |
+
normalize_embeddings=True,
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
dataset_embeddings = datasets.Dataset.from_dict({"embeddings": embeddings})
|
| 24 |
+
dataset_embeddings.add_faiss_index(column="embeddings")
|
| 25 |
+
|
| 26 |
+
# dataset_embeddings.save_faiss_index('embeddings', 'output/index_alone.faiss')
|
| 27 |
+
|
| 28 |
+
# import faiss
|
| 29 |
+
|
| 30 |
+
# index = faiss.read_index('index_alone.faiss')
|
| 31 |
+
|
| 32 |
+
sentence = "Knowledge of history is power."
|
| 33 |
+
sentence_embedding = encoder.encode([sentence])
|
| 34 |
+
# scores, samples = dataset_embeddings.search(
|
| 35 |
+
# sentence_embedding, k=10
|
| 36 |
+
# )
|
| 37 |
+
|
| 38 |
+
from sentence_transformers.util import semantic_search
|
| 39 |
+
|
| 40 |
+
# hits = semantic_search(sentence_embedding, dataset_embeddings[:, :], top_k=5)
|
| 41 |
+
author_indexes = range(1000)
|
| 42 |
+
hits = semantic_search(sentence_embedding, dataset_embeddings[author_indexes, :], top_k=5)
|
| 43 |
+
|
| 44 |
+
list_hits = [author_indexes[i['corpus_id']] for i in hits[0]]
|
| 45 |
+
st.write(dataset_embeddings.select([12676, 4967, 2612, 8884, 4797]))
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
# sentence_embedding = model.encode([sentence])
|
| 50 |
+
# scores, sample_indexes = QUOTES_INDEX.search(
|
| 51 |
+
# sentence_embedding, k=k
|
| 52 |
+
# )
|
| 53 |
+
# quotes = QUOTES_DATASET.iloc[sample_indexes[0]]
|
| 54 |
+
# author_descriptions_df = get_authors_descriptions(quotes['author'].unique())
|
| 55 |
+
# quotes = quotes.merge(author_descriptions_df, on='author')
|
| 56 |
+
# quotes["scores"] = scores[0]
|
| 57 |
+
# quotes = quotes.sort_values("scores", ascending=True) # lower is better
|