Spaces:
Sleeping
Sleeping
| import marimo | |
| __generated_with = "0.9.14" | |
| app = marimo.App(width="medium") | |
| def __(): | |
| import marimo as mo | |
| import os | |
| from huggingface_hub import InferenceClient | |
| return InferenceClient, mo, os | |
| def __(): | |
| MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta" | |
| return (MODEL_NAME,) | |
| def __(MODEL_NAME, mo): | |
| mo.md(f""" | |
| # Chat with **{MODEL_NAME}** | |
| """) | |
| return | |
| def __(max_tokens, mo, system_message, temperature, top_p): | |
| mo.hstack( | |
| [ | |
| system_message, | |
| mo.vstack([temperature, top_p, max_tokens], align="end"), | |
| ], | |
| ) | |
| return | |
| def __(mo, respond): | |
| chat = mo.ui.chat( | |
| model=respond, | |
| prompts=["Tell me a joke.", "What is the square root of {{number}}?"], | |
| ) | |
| chat | |
| return (chat,) | |
| def __(InferenceClient, MODEL_NAME, os): | |
| """ | |
| For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.26.2/en/guides/inference | |
| """ | |
| hf_token = os.environ.get("HF_TOKEN") | |
| if not hf_token: | |
| print("HF_TOKEN not set, may have limited access.") | |
| client = InferenceClient( | |
| MODEL_NAME, | |
| token=hf_token, | |
| ) | |
| return client, hf_token | |
| def __(client, mo): | |
| # Create UI controls | |
| system_message = mo.ui.text_area( | |
| value="You are a friendly Chatbot.", | |
| label="System message", | |
| ) | |
| max_tokens = mo.ui.slider( | |
| start=1, | |
| stop=2048, | |
| value=512, | |
| step=1, | |
| label="Max new tokens", | |
| show_value=True, | |
| ) | |
| temperature = mo.ui.slider( | |
| start=0.1, | |
| stop=4.0, | |
| value=0.7, | |
| step=0.1, | |
| label="Temperature", | |
| show_value=True, | |
| ) | |
| top_p = mo.ui.slider( | |
| start=0.1, | |
| stop=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-p (nucleus sampling)", | |
| show_value=True, | |
| ) | |
| # Add more configuration options if needed. | |
| # Create chat callback | |
| def respond(messages: list[mo.ai.ChatMessage], config): | |
| chat_messages = [{"role": "system", "content": system_message.value}] | |
| for message in messages: | |
| parts = [] | |
| # Add text | |
| parts.append({"type": "text", "text": message.content}) | |
| # Add attachments | |
| if message.attachments: | |
| for attachment in message.attachments: | |
| content_type = attachment.content_type or "" | |
| # This example only supports image attachments | |
| if content_type.startswith("image"): | |
| parts.append( | |
| { | |
| "type": "image_url", | |
| "image_url": {"url": attachment.url}, | |
| } | |
| ) | |
| else: | |
| raise ValueError( | |
| f"Unsupported content type {content_type}" | |
| ) | |
| chat_messages.append({"role": message.role, "content": parts}) | |
| response = client.chat_completion( | |
| chat_messages, | |
| max_tokens=max_tokens.value, | |
| temperature=temperature.value, | |
| top_p=top_p.value, | |
| stream=False, | |
| ) | |
| # You can return strings, markdown, charts, tables, dataframes, and more. | |
| return response.choices[0].message.content | |
| return max_tokens, respond, system_message, temperature, top_p | |
| def __(): | |
| # If you need to do anything _reactively_ to the chat messages, | |
| # you can access the chat messages using the `chat.value` attribute. | |
| # chat.value | |
| return | |
| if __name__ == "__main__": | |
| app.run() | |