Spaces:
Running
on
Zero
Running
on
Zero
initial commit
Browse files- .gitattributes +4 -0
- bee.JPG +3 -0
- bee_edited.jpg +3 -0
- dinov3_keypoint_demo.py +192 -0
- map.jpg +3 -0
- requirements.txt +6 -0
- street.jpg +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
bee_edited.jpg filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
bee.JPG filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
map.jpg filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
street.jpg filter=lfs diff=lfs merge=lfs -text
|
bee.JPG
ADDED
|
|
Git LFS Details
|
bee_edited.jpg
ADDED
|
Git LFS Details
|
dinov3_keypoint_demo.py
ADDED
|
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import cv2
|
| 6 |
+
from transformers import AutoImageProcessor, AutoModel
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
import spaces
|
| 9 |
+
|
| 10 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 11 |
+
|
| 12 |
+
DINO_MODELS = {
|
| 13 |
+
"DINOv3 Base ViT": "facebook/dinov3-vitb16-pretrain-lvd1689m",
|
| 14 |
+
"DINOv3 Large ViT": "facebook/dinov3-vitl16-pretrain-lvd1689m",
|
| 15 |
+
"DINOv3 Large ConvNeXT": "facebook/dinov3-convnext-large-pretrain-lvd1689m"
|
| 16 |
+
}
|
| 17 |
+
|
| 18 |
+
current_processor = None
|
| 19 |
+
current_model = None
|
| 20 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 21 |
+
|
| 22 |
+
def load_model(model_name):
|
| 23 |
+
global current_processor, current_model
|
| 24 |
+
|
| 25 |
+
model_path = DINO_MODELS[model_name]
|
| 26 |
+
|
| 27 |
+
try:
|
| 28 |
+
current_processor = AutoImageProcessor.from_pretrained(model_path)
|
| 29 |
+
current_model = AutoModel.from_pretrained(model_path)
|
| 30 |
+
current_model = current_model.to(DEVICE)
|
| 31 |
+
return f"✅ Model '{model_name}' loaded successfully!"
|
| 32 |
+
except Exception as e:
|
| 33 |
+
return f"❌ Error loading model '{model_name}': {str(e)}"
|
| 34 |
+
|
| 35 |
+
@spaces.GPU()
|
| 36 |
+
def extract_features(image):
|
| 37 |
+
|
| 38 |
+
original_size = image.size
|
| 39 |
+
|
| 40 |
+
inputs = current_processor(images=image, return_tensors="pt")
|
| 41 |
+
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
|
| 42 |
+
|
| 43 |
+
model_size = current_processor.size['height']
|
| 44 |
+
|
| 45 |
+
with torch.no_grad():
|
| 46 |
+
outputs = current_model(**inputs)
|
| 47 |
+
features = outputs.last_hidden_state
|
| 48 |
+
|
| 49 |
+
return features, original_size, model_size
|
| 50 |
+
|
| 51 |
+
def find_correspondences(features1, features2, threshold=0.8):
|
| 52 |
+
B, N1, D = features1.shape
|
| 53 |
+
B, N2, D = features2.shape
|
| 54 |
+
|
| 55 |
+
features1_norm = F.normalize(features1, dim=-1)
|
| 56 |
+
features2_norm = F.normalize(features2, dim=-1)
|
| 57 |
+
|
| 58 |
+
similarity = torch.matmul(features1_norm, features2_norm.transpose(-2, -1))
|
| 59 |
+
|
| 60 |
+
matches1 = torch.argmax(similarity, dim=-1)
|
| 61 |
+
matches2 = torch.argmax(similarity, dim=-2)
|
| 62 |
+
|
| 63 |
+
max_sim1 = torch.max(similarity, dim=-1)[0]
|
| 64 |
+
max_sim2 = torch.max(similarity, dim=-2)[0]
|
| 65 |
+
|
| 66 |
+
mutual_matches = matches2[0, matches1[0]] == torch.arange(N1).to(DEVICE)
|
| 67 |
+
good_matches = (max_sim1[0] > threshold) & mutual_matches
|
| 68 |
+
|
| 69 |
+
return matches1[0][good_matches], torch.arange(N1).to(DEVICE)[good_matches], max_sim1[0][good_matches]
|
| 70 |
+
|
| 71 |
+
def patch_to_image_coords(patch_idx, original_size, model_size, patch_size=14):
|
| 72 |
+
orig_w, orig_h = original_size
|
| 73 |
+
|
| 74 |
+
patches_h = model_size // patch_size
|
| 75 |
+
patches_w = model_size // patch_size
|
| 76 |
+
|
| 77 |
+
if patch_idx >= patches_h * patches_w:
|
| 78 |
+
return None, None
|
| 79 |
+
|
| 80 |
+
patch_y = patch_idx // patches_w
|
| 81 |
+
patch_x = patch_idx % patches_w
|
| 82 |
+
|
| 83 |
+
y_model = patch_y * patch_size + patch_size // 2
|
| 84 |
+
x_model = patch_x * patch_size + patch_size // 2
|
| 85 |
+
|
| 86 |
+
x = int(x_model * orig_w / model_size)
|
| 87 |
+
y = int(y_model * orig_h / model_size)
|
| 88 |
+
|
| 89 |
+
return x, y
|
| 90 |
+
|
| 91 |
+
def match_keypoints(image1, image2, model_name):
|
| 92 |
+
if image1 is None or image2 is None:
|
| 93 |
+
return None, "Please upload both images"
|
| 94 |
+
|
| 95 |
+
load_model(model_name)
|
| 96 |
+
|
| 97 |
+
img1_pil = Image.fromarray(image1).convert('RGB')
|
| 98 |
+
img2_pil = Image.fromarray(image2).convert('RGB')
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
features1, original_size1, model_size1 = extract_features(img1_pil)
|
| 102 |
+
features2, original_size2, model_size2 = extract_features(img2_pil)
|
| 103 |
+
|
| 104 |
+
features1 = features1[:, 1:, :]
|
| 105 |
+
features2 = features2[:, 1:, :]
|
| 106 |
+
|
| 107 |
+
matches2_idx, matches1_idx, similarities = find_correspondences(features1, features2, threshold=0.7)
|
| 108 |
+
|
| 109 |
+
img1_np = np.array(img1_pil)
|
| 110 |
+
img2_np = np.array(img2_pil)
|
| 111 |
+
|
| 112 |
+
h1, w1 = img1_np.shape[:2]
|
| 113 |
+
h2, w2 = img2_np.shape[:2]
|
| 114 |
+
|
| 115 |
+
result_img = np.zeros((max(h1, h2), w1 + w2, 3), dtype=np.uint8)
|
| 116 |
+
result_img[:h1, :w1] = img1_np
|
| 117 |
+
result_img[:h2, w1:w1+w2] = img2_np
|
| 118 |
+
|
| 119 |
+
colors = []
|
| 120 |
+
keypoints1 = []
|
| 121 |
+
keypoints2 = []
|
| 122 |
+
|
| 123 |
+
for i, (m1, m2, sim) in enumerate(zip(matches1_idx.cpu(), matches2_idx.cpu(), similarities.cpu())):
|
| 124 |
+
x1, y1 = patch_to_image_coords(m1.item(), original_size1, model_size1)
|
| 125 |
+
x2, y2 = patch_to_image_coords(m2.item(), original_size2, model_size2)
|
| 126 |
+
|
| 127 |
+
if x1 is not None and x2 is not None:
|
| 128 |
+
color = (np.random.randint(0, 255), np.random.randint(0, 255), np.random.randint(0, 255))
|
| 129 |
+
colors.append(color)
|
| 130 |
+
keypoints1.append((x1, y1))
|
| 131 |
+
keypoints2.append((x2 + w1, y2))
|
| 132 |
+
|
| 133 |
+
cv2.circle(result_img, (x1, y1), 15, color, -1)
|
| 134 |
+
cv2.circle(result_img, (x2 + w1, y2), 15, color, -1)
|
| 135 |
+
cv2.line(result_img, (x1, y1), (x2 + w1, y2), color, 10)
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
return result_img
|
| 140 |
+
|
| 141 |
+
load_model("DINOv3 Base ViT")
|
| 142 |
+
|
| 143 |
+
with gr.Blocks(title="DINOv3 Keypoint Matching") as demo:
|
| 144 |
+
gr.Markdown("# DINOv3 For Keypoint Matching")
|
| 145 |
+
gr.Markdown("DINOv3 can be used to find matching features between two images.")
|
| 146 |
+
gr.Markdown("Upload two images to find corresponding keypoints using DINOv3 features, switch between different DINOv3 checkpoints.")
|
| 147 |
+
|
| 148 |
+
with gr.Row():
|
| 149 |
+
image1 = gr.Image(label="Image 1", type="numpy")
|
| 150 |
+
image2 = gr.Image(label="Image 2", type="numpy")
|
| 151 |
+
with gr.Column(scale=1):
|
| 152 |
+
|
| 153 |
+
model_selector = gr.Dropdown(
|
| 154 |
+
choices=list(DINO_MODELS.keys()),
|
| 155 |
+
value="DINOv3 Base ViT",
|
| 156 |
+
label="Select DINOv3 Model",
|
| 157 |
+
info="Choose the model size. Larger models may provide better features but require more memory."
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
# Add status bar
|
| 161 |
+
status_bar = gr.Textbox(
|
| 162 |
+
value="✅ Model 'DINOv3 Base ViT' loaded successfully!",
|
| 163 |
+
label="Status",
|
| 164 |
+
interactive=False,
|
| 165 |
+
container=False
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
match_btn = gr.Button("Find Correspondences", variant="primary")
|
| 169 |
+
|
| 170 |
+
with gr.Column(scale=2):
|
| 171 |
+
output_image = gr.Image(label="Matched Keypoints")
|
| 172 |
+
|
| 173 |
+
# Connect model selector to status bar
|
| 174 |
+
model_selector.change(
|
| 175 |
+
fn=load_model,
|
| 176 |
+
inputs=[model_selector],
|
| 177 |
+
outputs=[status_bar]
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
match_btn.click(
|
| 181 |
+
fn=match_keypoints,
|
| 182 |
+
inputs=[image1, image2, model_selector],
|
| 183 |
+
outputs=[output_image]
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
gr.Examples(
|
| 187 |
+
examples=[["map.jpg", "street.jpg"], ["bee.JPG", "bee_edited.jpg"]],
|
| 188 |
+
inputs=[image1, image2]
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
if __name__ == "__main__":
|
| 192 |
+
demo.launch(share=True)
|
map.jpg
ADDED
|
Git LFS Details
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
spaces
|
| 2 |
+
git+https://github.com/huggingface/transformers.git
|
| 3 |
+
opencv-python
|
| 4 |
+
torch
|
| 5 |
+
torchvision
|
| 6 |
+
pillow
|
street.jpg
ADDED
|
Git LFS Details
|