Update inference.py
Browse files- inference.py +62 -28
inference.py
CHANGED
|
@@ -1,37 +1,67 @@
|
|
| 1 |
# inference.py
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from hf_client import get_inference_client
|
| 4 |
from models import find_model
|
| 5 |
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
def chat_completion(
|
| 8 |
model_id: str,
|
| 9 |
messages: List[Dict[str, str]],
|
| 10 |
provider: Optional[str] = None,
|
| 11 |
-
max_tokens: int = 4096
|
|
|
|
| 12 |
) -> str:
|
| 13 |
"""
|
| 14 |
-
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
Returns
|
| 23 |
-
|
|
|
|
| 24 |
"""
|
| 25 |
-
|
| 26 |
-
if provider is None:
|
| 27 |
-
meta = find_model(model_id)
|
| 28 |
-
provider = meta.default_provider if meta else "auto"
|
| 29 |
-
|
| 30 |
-
client = get_inference_client(model_id, provider)
|
| 31 |
resp = client.chat.completions.create(
|
| 32 |
model=model_id,
|
| 33 |
messages=messages,
|
| 34 |
-
max_tokens=max_tokens
|
|
|
|
| 35 |
)
|
| 36 |
return resp.choices[0].message.content
|
| 37 |
|
|
@@ -40,24 +70,28 @@ def stream_chat_completion(
|
|
| 40 |
model_id: str,
|
| 41 |
messages: List[Dict[str, str]],
|
| 42 |
provider: Optional[str] = None,
|
| 43 |
-
max_tokens: int = 4096
|
| 44 |
-
|
|
|
|
| 45 |
"""
|
| 46 |
-
|
| 47 |
-
Yields partial message chunks as strings.
|
| 48 |
-
"""
|
| 49 |
-
if provider is None:
|
| 50 |
-
meta = find_model(model_id)
|
| 51 |
-
provider = meta.default_provider if meta else "auto"
|
| 52 |
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
stream = client.chat.completions.create(
|
| 55 |
model=model_id,
|
| 56 |
messages=messages,
|
| 57 |
max_tokens=max_tokens,
|
| 58 |
-
stream=True
|
|
|
|
| 59 |
)
|
|
|
|
|
|
|
| 60 |
for chunk in stream:
|
| 61 |
-
delta = getattr(chunk.choices[0].delta, "content", None)
|
| 62 |
if delta:
|
| 63 |
yield delta
|
|
|
|
| 1 |
# inference.py
|
| 2 |
+
# -------------------------------------------------------------
|
| 3 |
+
# Unified wrapper around hf_client.get_inference_client
|
| 4 |
+
# with automatic provider‑routing based on model registry
|
| 5 |
+
# (see models.py) and graceful fall‑back to Groq.
|
| 6 |
+
# -------------------------------------------------------------
|
| 7 |
+
from __future__ import annotations
|
| 8 |
+
|
| 9 |
+
from typing import Dict, Generator, List, Optional
|
| 10 |
+
|
| 11 |
from hf_client import get_inference_client
|
| 12 |
from models import find_model
|
| 13 |
|
| 14 |
|
| 15 |
+
# ------------------------------------------------------------------
|
| 16 |
+
# Helpers
|
| 17 |
+
# ------------------------------------------------------------------
|
| 18 |
+
def _resolve_provider(model_id: str, override: str | None) -> str:
|
| 19 |
+
"""
|
| 20 |
+
Decide which provider to use.
|
| 21 |
+
|
| 22 |
+
Priority:
|
| 23 |
+
1. Explicit *override* arg supplied by caller.
|
| 24 |
+
2. Model registry default_provider (see models.py).
|
| 25 |
+
3. "auto" – lets HF route to the first available provider.
|
| 26 |
+
"""
|
| 27 |
+
if override:
|
| 28 |
+
return override
|
| 29 |
+
|
| 30 |
+
meta = find_model(model_id)
|
| 31 |
+
return getattr(meta, "default_provider", "auto") if meta else "auto"
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
# ------------------------------------------------------------------
|
| 35 |
+
# Public API
|
| 36 |
+
# ------------------------------------------------------------------
|
| 37 |
def chat_completion(
|
| 38 |
model_id: str,
|
| 39 |
messages: List[Dict[str, str]],
|
| 40 |
provider: Optional[str] = None,
|
| 41 |
+
max_tokens: int = 4096,
|
| 42 |
+
**kwargs,
|
| 43 |
) -> str:
|
| 44 |
"""
|
| 45 |
+
Blocking convenience wrapper – returns the full assistant reply.
|
| 46 |
|
| 47 |
+
Parameters
|
| 48 |
+
----------
|
| 49 |
+
model_id : HF or provider‑qualified model path (e.g. "openai/gpt-4").
|
| 50 |
+
messages : OpenAI‑style [{'role': ..., 'content': ...}, …].
|
| 51 |
+
provider : Optional provider override; otherwise auto‑resolved.
|
| 52 |
+
max_tokens : Token budget for generation.
|
| 53 |
+
kwargs : Forward‑compatible extra arguments (temperature, etc.).
|
| 54 |
|
| 55 |
+
Returns
|
| 56 |
+
-------
|
| 57 |
+
str – assistant message content.
|
| 58 |
"""
|
| 59 |
+
client = get_inference_client(model_id, _resolve_provider(model_id, provider))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
resp = client.chat.completions.create(
|
| 61 |
model=model_id,
|
| 62 |
messages=messages,
|
| 63 |
+
max_tokens=max_tokens,
|
| 64 |
+
**kwargs,
|
| 65 |
)
|
| 66 |
return resp.choices[0].message.content
|
| 67 |
|
|
|
|
| 70 |
model_id: str,
|
| 71 |
messages: List[Dict[str, str]],
|
| 72 |
provider: Optional[str] = None,
|
| 73 |
+
max_tokens: int = 4096,
|
| 74 |
+
**kwargs,
|
| 75 |
+
) -> Generator[str, None, None]:
|
| 76 |
"""
|
| 77 |
+
Yield the assistant response *incrementally*.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
+
Example
|
| 80 |
+
-------
|
| 81 |
+
>>> for chunk in stream_chat_completion(model, msgs):
|
| 82 |
+
... print(chunk, end='', flush=True)
|
| 83 |
+
"""
|
| 84 |
+
client = get_inference_client(model_id, _resolve_provider(model_id, provider))
|
| 85 |
stream = client.chat.completions.create(
|
| 86 |
model=model_id,
|
| 87 |
messages=messages,
|
| 88 |
max_tokens=max_tokens,
|
| 89 |
+
stream=True,
|
| 90 |
+
**kwargs,
|
| 91 |
)
|
| 92 |
+
|
| 93 |
+
# HF Inference returns chunks with .choices[0].delta.content
|
| 94 |
for chunk in stream:
|
| 95 |
+
delta: str | None = getattr(chunk.choices[0].delta, "content", None)
|
| 96 |
if delta:
|
| 97 |
yield delta
|