EBD_Fest / pdf_parser.py
minhvtt's picture
Upload 20 files
cb93402 verified
"""
PDF Parser Service for RAG Chatbot
Extracts text from PDF and splits into chunks for indexing
"""
import pypdfium2 as pdfium
from typing import List, Dict, Optional
import re
from dataclasses import dataclass
@dataclass
class PDFChunk:
"""Represents a chunk of text from PDF"""
text: str
page_number: int
chunk_index: int
metadata: Dict
class PDFParser:
"""Parse PDF files and prepare for RAG indexing"""
def __init__(
self,
chunk_size: int = 500, # words per chunk
chunk_overlap: int = 50, # words overlap between chunks
min_chunk_size: int = 50 # minimum words in a chunk
):
self.chunk_size = chunk_size
self.chunk_overlap = chunk_overlap
self.min_chunk_size = min_chunk_size
def extract_text_from_pdf(self, pdf_path: str) -> Dict[int, str]:
"""
Extract text from PDF file
Args:
pdf_path: Path to PDF file
Returns:
Dictionary mapping page number to text content
"""
pdf_text = {}
try:
pdf = pdfium.PdfDocument(pdf_path)
for page_num in range(len(pdf)):
page = pdf[page_num]
textpage = page.get_textpage()
text = textpage.get_text_range()
# Clean text
text = self._clean_text(text)
pdf_text[page_num + 1] = text # 1-indexed pages
return pdf_text
except Exception as e:
raise Exception(f"Error reading PDF: {str(e)}")
def _clean_text(self, text: str) -> str:
"""Clean extracted text"""
# Remove excessive whitespace
text = re.sub(r'\s+', ' ', text)
# Remove special characters that might cause issues
text = text.replace('\x00', '')
return text.strip()
def chunk_text(self, text: str, page_number: int) -> List[PDFChunk]:
"""
Split text into overlapping chunks
Args:
text: Text to chunk
page_number: Page number this text came from
Returns:
List of PDFChunk objects
"""
# Split into words
words = text.split()
if len(words) < self.min_chunk_size:
# Text too short, return as single chunk
if len(words) > 0:
return [PDFChunk(
text=text,
page_number=page_number,
chunk_index=0,
metadata={'page': page_number, 'chunk': 0}
)]
return []
chunks = []
chunk_index = 0
start = 0
while start < len(words):
# Get chunk
end = min(start + self.chunk_size, len(words))
chunk_words = words[start:end]
chunk_text = ' '.join(chunk_words)
chunks.append(PDFChunk(
text=chunk_text,
page_number=page_number,
chunk_index=chunk_index,
metadata={
'page': page_number,
'chunk': chunk_index,
'start_word': start,
'end_word': end
}
))
chunk_index += 1
# Move start position with overlap
start = end - self.chunk_overlap
# Avoid infinite loop
if start >= len(words) - self.min_chunk_size:
break
return chunks
def parse_pdf(
self,
pdf_path: str,
document_metadata: Optional[Dict] = None
) -> List[PDFChunk]:
"""
Parse entire PDF into chunks
Args:
pdf_path: Path to PDF file
document_metadata: Additional metadata for the document
Returns:
List of all chunks from the PDF
"""
# Extract text from all pages
pages_text = self.extract_text_from_pdf(pdf_path)
# Chunk each page
all_chunks = []
for page_num, text in pages_text.items():
chunks = self.chunk_text(text, page_num)
# Add document metadata
if document_metadata:
for chunk in chunks:
chunk.metadata.update(document_metadata)
all_chunks.extend(chunks)
return all_chunks
def parse_pdf_bytes(
self,
pdf_bytes: bytes,
document_metadata: Optional[Dict] = None
) -> List[PDFChunk]:
"""
Parse PDF from bytes (for uploaded files)
Args:
pdf_bytes: PDF file as bytes
document_metadata: Additional metadata
Returns:
List of chunks
"""
import tempfile
import os
# Save to temp file
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp:
tmp.write(pdf_bytes)
tmp_path = tmp.name
try:
chunks = self.parse_pdf(tmp_path, document_metadata)
return chunks
finally:
# Clean up temp file
if os.path.exists(tmp_path):
os.unlink(tmp_path)
def get_pdf_info(self, pdf_path: str) -> Dict:
"""
Get basic info about PDF
Args:
pdf_path: Path to PDF file
Returns:
Dictionary with PDF information
"""
try:
pdf = pdfium.PdfDocument(pdf_path)
info = {
'num_pages': len(pdf),
'file_path': pdf_path,
}
return info
except Exception as e:
raise Exception(f"Error reading PDF info: {str(e)}")
class PDFIndexer:
"""Index PDF chunks into RAG system"""
def __init__(self, embedding_service, qdrant_service, documents_collection):
self.embedding_service = embedding_service
self.qdrant_service = qdrant_service
self.documents_collection = documents_collection
self.parser = PDFParser()
def index_pdf(
self,
pdf_path: str,
document_id: str,
document_metadata: Optional[Dict] = None
) -> Dict:
"""
Index entire PDF into RAG system
Args:
pdf_path: Path to PDF file
document_id: Unique ID for this document
document_metadata: Additional metadata (title, author, etc.)
Returns:
Indexing results
"""
# Parse PDF
chunks = self.parser.parse_pdf(pdf_path, document_metadata)
# Index each chunk
indexed_count = 0
chunk_ids = []
for chunk in chunks:
# Generate unique ID for chunk
chunk_id = f"{document_id}_p{chunk.page_number}_c{chunk.chunk_index}"
# Generate embedding
embedding = self.embedding_service.encode_text(chunk.text)
# Prepare metadata
metadata = {
'text': chunk.text,
'document_id': document_id,
'page': chunk.page_number,
'chunk_index': chunk.chunk_index,
'source': 'pdf',
**chunk.metadata
}
# Index to Qdrant
self.qdrant_service.index_data(
doc_id=chunk_id,
embedding=embedding,
metadata=metadata
)
chunk_ids.append(chunk_id)
indexed_count += 1
# Save document info to MongoDB
doc_info = {
'document_id': document_id,
'type': 'pdf',
'file_path': pdf_path,
'num_chunks': indexed_count,
'chunk_ids': chunk_ids,
'metadata': document_metadata or {},
'pdf_info': self.parser.get_pdf_info(pdf_path)
}
self.documents_collection.insert_one(doc_info)
return {
'success': True,
'document_id': document_id,
'chunks_indexed': indexed_count,
'chunk_ids': chunk_ids[:5] # Return first 5 as sample
}
def index_pdf_bytes(
self,
pdf_bytes: bytes,
document_id: str,
filename: str,
document_metadata: Optional[Dict] = None
) -> Dict:
"""
Index PDF from bytes (for uploaded files)
Args:
pdf_bytes: PDF file as bytes
document_id: Unique ID for this document
filename: Original filename
document_metadata: Additional metadata
Returns:
Indexing results
"""
# Parse PDF
metadata = document_metadata or {}
metadata['filename'] = filename
chunks = self.parser.parse_pdf_bytes(pdf_bytes, metadata)
# Index each chunk
indexed_count = 0
chunk_ids = []
for chunk in chunks:
# Generate unique ID for chunk
chunk_id = f"{document_id}_p{chunk.page_number}_c{chunk.chunk_index}"
# Generate embedding
embedding = self.embedding_service.encode_text(chunk.text)
# Prepare metadata
metadata = {
'text': chunk.text,
'document_id': document_id,
'page': chunk.page_number,
'chunk_index': chunk.chunk_index,
'source': 'pdf',
'filename': filename,
**chunk.metadata
}
# Index to Qdrant
self.qdrant_service.index_data(
doc_id=chunk_id,
embedding=embedding,
metadata=metadata
)
chunk_ids.append(chunk_id)
indexed_count += 1
# Save document info to MongoDB
doc_info = {
'document_id': document_id,
'type': 'pdf',
'filename': filename,
'num_chunks': indexed_count,
'chunk_ids': chunk_ids,
'metadata': metadata
}
self.documents_collection.insert_one(doc_info)
return {
'success': True,
'document_id': document_id,
'filename': filename,
'chunks_indexed': indexed_count,
'chunk_ids': chunk_ids[:5]
}