Upload convert_ytvis2tao.py
Browse files
annotations/convert_ytvis2tao.py
ADDED
|
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import argparse
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def parse_args():
|
| 8 |
+
parser = argparse.ArgumentParser("D2 model converter")
|
| 9 |
+
|
| 10 |
+
parser.add_argument("--results", default="", type=str, help="Path to the GLEE output dir ")
|
| 11 |
+
parser.add_argument("--refer", default="", type=str, help="Path to the BURST annotation val dir")
|
| 12 |
+
|
| 13 |
+
return parser.parse_args()
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def main():
|
| 17 |
+
args = parse_args()
|
| 18 |
+
|
| 19 |
+
ori_anno = json.load(open(args.results,'rb'))
|
| 20 |
+
|
| 21 |
+
reference_anno = json.load(open(args.refer,'rb'))
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
num_tracks = 0
|
| 25 |
+
num_miss_video = 0
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
id_mapping = {}
|
| 29 |
+
|
| 30 |
+
for i, cate_info in enumerate(reference_anno['categories']):
|
| 31 |
+
new_id = i
|
| 32 |
+
old_id = cate_info['id']
|
| 33 |
+
id_mapping.update({new_id:old_id})
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
ref_sequences_dict = {}
|
| 37 |
+
for ref in reference_anno['sequences']:
|
| 38 |
+
ref_sequences_dict[ref['id']] = ref
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
# ids = [v['category_id'] for v in ori_anno]
|
| 42 |
+
|
| 43 |
+
sequences_dict = {}
|
| 44 |
+
|
| 45 |
+
for seg in ori_anno:
|
| 46 |
+
vid = seg['video_id']
|
| 47 |
+
if vid not in sequences_dict.keys():
|
| 48 |
+
# import pdb;pdb.set_trace()
|
| 49 |
+
sequences_dict[vid] = {
|
| 50 |
+
'id': vid,
|
| 51 |
+
'width': ref_sequences_dict[vid]['width'],
|
| 52 |
+
'height': ref_sequences_dict[vid]['height'],
|
| 53 |
+
'seq_name': ref_sequences_dict[vid]['seq_name'],
|
| 54 |
+
'dataset': ref_sequences_dict[vid]['dataset'],
|
| 55 |
+
'annotated_image_paths': ref_sequences_dict[vid]['annotated_image_paths'],
|
| 56 |
+
'fps': ref_sequences_dict[vid]['fps'],
|
| 57 |
+
'segmentations': [{} for i in range(len(seg['segmentations']))],
|
| 58 |
+
'track_category_ids': {},
|
| 59 |
+
}
|
| 60 |
+
track_id = str(len(sequences_dict[vid]['track_category_ids']) + 1)
|
| 61 |
+
|
| 62 |
+
for frame, rles in enumerate(seg['segmentations']):
|
| 63 |
+
sequences_dict[vid]['segmentations'][frame][track_id] = {'rle': rles['counts'], 'score':seg['score']}
|
| 64 |
+
# import pdb;pdb.set_trace()
|
| 65 |
+
sequences_dict[vid]['track_category_ids'][track_id] = id_mapping[seg['category_id']]
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
results = {'sequences':[]}
|
| 69 |
+
for k,v in sequences_dict.items():
|
| 70 |
+
results['sequences'].append(v)
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
with open('converted_tao_results.json', 'w') as f:
|
| 74 |
+
json.dump(results, f)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
if __name__ == "__main__":
|
| 79 |
+
main()
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
|