Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import joblib
|
| 4 |
+
import numpy as np
|
| 5 |
+
import plotly.graph_objects as go
|
| 6 |
+
import plotly.express as px
|
| 7 |
+
|
| 8 |
+
# Set the title of the app
|
| 9 |
+
st.title("Robotic Grasp Robustness Predictor")
|
| 10 |
+
st.markdown("""
|
| 11 |
+
This application predicts the stability/robustness of a robotic grasp based on sensor data.
|
| 12 |
+
You can either upload a CSV file with sensor features or input values manually.
|
| 13 |
+
""")
|
| 14 |
+
|
| 15 |
+
# Load the saved model (make sure the model file 'model.pkl' is in the same directory)
|
| 16 |
+
@st.cache_resource
|
| 17 |
+
def load_model():
|
| 18 |
+
model = joblib.load("model.pkl")
|
| 19 |
+
return model
|
| 20 |
+
|
| 21 |
+
model = load_model()
|
| 22 |
+
|
| 23 |
+
# Sidebar for input selection
|
| 24 |
+
st.sidebar.header("Input Options")
|
| 25 |
+
input_method = st.sidebar.radio("Choose input method:", ("CSV Upload", "Manual Input"))
|
| 26 |
+
|
| 27 |
+
# Define the list of features expected by the model.
|
| 28 |
+
# Replace these with your actual feature names after cleaning.
|
| 29 |
+
FEATURES = [
|
| 30 |
+
"H1_F1J2_pos", "H1_F1J2_vel", "H1_F1J2_eff",
|
| 31 |
+
"H1_F1J3_pos", "H1_F1J3_vel", "H1_F1J3_eff",
|
| 32 |
+
"H1_F1J1_pos", "H1_F1J1_vel", "H1_F1J1_eff",
|
| 33 |
+
"H1_F3J1_pos", "H1_F3J1_vel", "H1_F3J1_eff",
|
| 34 |
+
"H1_F3J2_pos", "H1_F3J2_vel", "H1_F3J2_eff",
|
| 35 |
+
"H1_F3J3_pos", "H1_F3J3_vel", "H1_F3J3_eff",
|
| 36 |
+
"H1_F2J1_pos", "H1_F2J1_vel", "H1_F2J1_eff",
|
| 37 |
+
"H1_F2J3_pos", "H1_F2J3_vel", "H1_F2J3_eff",
|
| 38 |
+
"H1_F2J2_pos", "H1_F2J2_vel", "H1_F2J2_eff"
|
| 39 |
+
]
|
| 40 |
+
|
| 41 |
+
# Option 1: CSV Upload
|
| 42 |
+
if input_method == "CSV Upload":
|
| 43 |
+
st.header("Upload CSV File")
|
| 44 |
+
uploaded_file = st.file_uploader("Upload your CSV file", type=["csv"])
|
| 45 |
+
if uploaded_file is not None:
|
| 46 |
+
try:
|
| 47 |
+
input_df = pd.read_csv(uploaded_file)
|
| 48 |
+
st.success("CSV file successfully loaded!")
|
| 49 |
+
# Clean column names
|
| 50 |
+
input_df.columns = input_df.columns.str.strip()
|
| 51 |
+
missing_features = [col for col in FEATURES if col not in input_df.columns]
|
| 52 |
+
if missing_features:
|
| 53 |
+
st.error(f"The following required feature(s) are missing from the file: {', '.join(missing_features)}")
|
| 54 |
+
else:
|
| 55 |
+
# Make predictions
|
| 56 |
+
predictions = model.predict(input_df[FEATURES])
|
| 57 |
+
input_df["Predicted Robustness"] = predictions
|
| 58 |
+
|
| 59 |
+
# Interactive histogram of predictions
|
| 60 |
+
fig_hist = px.histogram(input_df, x="Predicted Robustness", nbins=30,
|
| 61 |
+
title="Distribution of Predicted Robustness")
|
| 62 |
+
st.plotly_chart(fig_hist, use_container_width=True)
|
| 63 |
+
|
| 64 |
+
st.subheader("Predictions")
|
| 65 |
+
st.dataframe(input_df)
|
| 66 |
+
except Exception as e:
|
| 67 |
+
st.error(f"Error processing file: {e}")
|
| 68 |
+
# Option 2: Manual Input
|
| 69 |
+
else:
|
| 70 |
+
st.header("Manual Input")
|
| 71 |
+
st.markdown("Enter the sensor values for prediction:")
|
| 72 |
+
|
| 73 |
+
# Group sensor inputs into sections to improve readability
|
| 74 |
+
input_data = {}
|
| 75 |
+
|
| 76 |
+
with st.expander("F1 Joint Sensors"):
|
| 77 |
+
st.write("Sensors for Finger 1:")
|
| 78 |
+
input_data["H1_F1J2_pos"] = st.number_input("H1_F1J2_pos", value=0.0, format="%.5f")
|
| 79 |
+
input_data["H1_F1J2_vel"] = st.number_input("H1_F1J2_vel", value=0.0, format="%.5f")
|
| 80 |
+
input_data["H1_F1J2_eff"] = st.number_input("H1_F1J2_eff", value=0.0, format="%.5f")
|
| 81 |
+
|
| 82 |
+
st.write("Sensors for Finger 3:")
|
| 83 |
+
input_data["H1_F1J3_pos"] = st.number_input("H1_F1J3_pos", value=0.0, format="%.5f")
|
| 84 |
+
input_data["H1_F1J3_vel"] = st.number_input("H1_F1J3_vel", value=0.0, format="%.5f")
|
| 85 |
+
input_data["H1_F1J3_eff"] = st.number_input("H1_F1J3_eff", value=0.0, format="%.5f")
|
| 86 |
+
|
| 87 |
+
st.write("Sensors for Finger 1 (alternate):")
|
| 88 |
+
input_data["H1_F1J1_pos"] = st.number_input("H1_F1J1_pos", value=0.0, format="%.5f")
|
| 89 |
+
input_data["H1_F1J1_vel"] = st.number_input("H1_F1J1_vel", value=0.0, format="%.5f")
|
| 90 |
+
input_data["H1_F1J1_eff"] = st.number_input("H1_F1J1_eff", value=0.0, format="%.5f")
|
| 91 |
+
|
| 92 |
+
with st.expander("F3 Joint Sensors"):
|
| 93 |
+
input_data["H1_F3J1_pos"] = st.number_input("H1_F3J1_pos", value=0.0, format="%.5f")
|
| 94 |
+
input_data["H1_F3J1_vel"] = st.number_input("H1_F3J1_vel", value=0.0, format="%.5f")
|
| 95 |
+
input_data["H1_F3J1_eff"] = st.number_input("H1_F3J1_eff", value=0.0, format="%.5f")
|
| 96 |
+
|
| 97 |
+
input_data["H1_F3J2_pos"] = st.number_input("H1_F3J2_pos", value=0.0, format="%.5f")
|
| 98 |
+
input_data["H1_F3J2_vel"] = st.number_input("H1_F3J2_vel", value=0.0, format="%.5f")
|
| 99 |
+
input_data["H1_F3J2_eff"] = st.number_input("H1_F3J2_eff", value=0.0, format="%.5f")
|
| 100 |
+
|
| 101 |
+
input_data["H1_F3J3_pos"] = st.number_input("H1_F3J3_pos", value=0.0, format="%.5f")
|
| 102 |
+
input_data["H1_F3J3_vel"] = st.number_input("H1_F3J3_vel", value=0.0, format="%.5f")
|
| 103 |
+
input_data["H1_F3J3_eff"] = st.number_input("H1_F3J3_eff", value=0.0, format="%.5f")
|
| 104 |
+
|
| 105 |
+
with st.expander("F2 Joint Sensors"):
|
| 106 |
+
input_data["H1_F2J1_pos"] = st.number_input("H1_F2J1_pos", value=0.0, format="%.5f")
|
| 107 |
+
input_data["H1_F2J1_vel"] = st.number_input("H1_F2J1_vel", value=0.0, format="%.5f")
|
| 108 |
+
input_data["H1_F2J1_eff"] = st.number_input("H1_F2J1_eff", value=0.0, format="%.5f")
|
| 109 |
+
|
| 110 |
+
input_data["H1_F2J3_pos"] = st.number_input("H1_F2J3_pos", value=0.0, format="%.5f")
|
| 111 |
+
input_data["H1_F2J3_vel"] = st.number_input("H1_F2J3_vel", value=0.0, format="%.5f")
|
| 112 |
+
input_data["H1_F2J3_eff"] = st.number_input("H1_F2J3_eff", value=0.0, format="%.5f")
|
| 113 |
+
|
| 114 |
+
input_data["H1_F2J2_pos"] = st.number_input("H1_F2J2_pos", value=0.0, format="%.5f")
|
| 115 |
+
input_data["H1_F2J2_vel"] = st.number_input("H1_F2J2_vel", value=0.0, format="%.5f")
|
| 116 |
+
input_data["H1_F2J2_eff"] = st.number_input("H1_F2J2_eff", value=0.0, format="%.5f")
|
| 117 |
+
|
| 118 |
+
# Real-time prediction as values change.
|
| 119 |
+
if st.button("Predict"):
|
| 120 |
+
input_df = pd.DataFrame([input_data])
|
| 121 |
+
prediction = model.predict(input_df)
|
| 122 |
+
st.success(f"The predicted grasp robustness is: {prediction[0]:.3f}")
|
| 123 |
+
|
| 124 |
+
# Create a gauge chart (using Plotly) to visualize the prediction
|
| 125 |
+
# (Customize the min/max values based on your domain; below, 0-100 is used as an example.)
|
| 126 |
+
fig_gauge = go.Figure(go.Indicator(
|
| 127 |
+
mode = "gauge+number",
|
| 128 |
+
value = prediction[0],
|
| 129 |
+
title = {'text': "Grasp Robustness"},
|
| 130 |
+
gauge = {'axis': {'range': [None, 100]},
|
| 131 |
+
'bar': {'color': "darkblue"},
|
| 132 |
+
'steps' : [
|
| 133 |
+
{'range': [0, 30], 'color': "red"},
|
| 134 |
+
{'range': [30, 70], 'color': "yellow"},
|
| 135 |
+
{'range': [70, 100], 'color': "green"}],
|
| 136 |
+
}
|
| 137 |
+
))
|
| 138 |
+
st.plotly_chart(fig_gauge, use_container_width=True)
|
| 139 |
+
|
| 140 |
+
# If the model supports feature importances (e.g. RandomForest), display them
|
| 141 |
+
try:
|
| 142 |
+
feature_importances = model.named_steps['model'].feature_importances_
|
| 143 |
+
imp_df = pd.DataFrame({
|
| 144 |
+
'Feature': FEATURES,
|
| 145 |
+
'Importance': feature_importances
|
| 146 |
+
}).sort_values(by='Importance', ascending=False)
|
| 147 |
+
st.subheader("Feature Importances")
|
| 148 |
+
fig_imp = px.bar(imp_df, x='Feature', y='Importance', title="Feature Importances")
|
| 149 |
+
st.plotly_chart(fig_imp, use_container_width=True)
|
| 150 |
+
except Exception as ex:
|
| 151 |
+
st.info("Feature importance is not available for this model.")
|