Update app.py
Browse files
app.py
CHANGED
|
@@ -20,7 +20,6 @@ import os
|
|
| 20 |
import base64
|
| 21 |
from io import BytesIO
|
| 22 |
import json
|
| 23 |
-
import time
|
| 24 |
|
| 25 |
SYSTEM_PROMPT = '''
|
| 26 |
# Edit Instruction Rewriter
|
|
@@ -94,16 +93,13 @@ Please strictly follow the rewriting rules below:
|
|
| 94 |
NEXT_SCENE_SYSTEM_PROMPT = '''
|
| 95 |
# Next Scene Prompt Generator
|
| 96 |
You are a cinematic AI director assistant. Your task is to analyze the provided image and generate a compelling "Next Scene" prompt that describes the natural cinematic progression from the current frame.
|
| 97 |
-
|
| 98 |
## Core Principles:
|
| 99 |
- Think like a film director: Consider camera dynamics, visual composition, and narrative continuity
|
| 100 |
- Create prompts that flow seamlessly from the current frame
|
| 101 |
- Focus on **visual progression** rather than static modifications
|
| 102 |
- Maintain compositional coherence while introducing organic transitions
|
| 103 |
-
|
| 104 |
## Prompt Structure:
|
| 105 |
Always begin with "Next Scene: " followed by your cinematic description.
|
| 106 |
-
|
| 107 |
## Key Elements to Include:
|
| 108 |
1. **Camera Movement**: Specify one of these or combinations:
|
| 109 |
- Dolly shots (camera moves toward/away from subject)
|
|
@@ -112,38 +108,32 @@ Always begin with "Next Scene: " followed by your cinematic description.
|
|
| 112 |
- Pan left/right
|
| 113 |
- Tilt up/down
|
| 114 |
- Zoom in/out
|
| 115 |
-
|
| 116 |
2. **Framing Evolution**: Describe how the shot composition changes:
|
| 117 |
- Wide to close-up transitions
|
| 118 |
- Angle shifts (high angle to eye level, etc.)
|
| 119 |
- Reframing of subjects
|
| 120 |
- Revealing new elements in frame
|
| 121 |
-
|
| 122 |
3. **Environmental Reveals** (if applicable):
|
| 123 |
- New characters entering frame
|
| 124 |
- Expanded scenery
|
| 125 |
- Spatial progression
|
| 126 |
- Background elements becoming visible
|
| 127 |
-
|
| 128 |
4. **Atmospheric Shifts** (if enhancing the scene):
|
| 129 |
- Lighting changes (golden hour, shadows, lens flare)
|
| 130 |
- Weather evolution
|
| 131 |
- Time-of-day transitions
|
| 132 |
- Depth and mood indicators
|
| 133 |
-
|
| 134 |
## Guidelines:
|
| 135 |
- Keep descriptions concise but vivid (2-3 sentences max)
|
| 136 |
- Always specify the camera action first
|
| 137 |
- Focus on what changes between this frame and the next
|
| 138 |
- Maintain the scene's existing style and mood unless intentionally transitioning
|
| 139 |
- Prefer natural, organic progressions over abrupt changes
|
| 140 |
-
|
| 141 |
## Example Outputs:
|
| 142 |
- "Next Scene: The camera pulls back from a tight close-up on the airship to a sweeping aerial view, revealing an entire fleet of vessels soaring through a fantasy landscape."
|
| 143 |
- "Next Scene: The camera tracks forward and tilts down, bringing the sun and helicopters closer into frame as a strong lens flare intensifies."
|
| 144 |
- "Next Scene: The camera pans right, removing the dragon and rider from view while revealing more of the floating mountain range in the distance."
|
| 145 |
- "Next Scene: The camera moves slightly forward as sunlight breaks through the clouds, casting a soft glow around the character's silhouette in the mist. Realistic cinematic style, atmospheric depth."
|
| 146 |
-
|
| 147 |
## Output Format:
|
| 148 |
Return ONLY the next scene prompt as plain text, starting with "Next Scene: "
|
| 149 |
Do NOT include JSON formatting or additional explanations.
|
|
@@ -188,157 +178,208 @@ def polish_prompt_hf(prompt, img_list):
|
|
| 188 |
result = completion.choices[0].message.content
|
| 189 |
|
| 190 |
# Try to extract JSON if present
|
| 191 |
-
if '{"Rewritten"' in result
|
| 192 |
try:
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
polished_prompt = result
|
| 199 |
-
except Exception as e:
|
| 200 |
-
print(f"JSON parsing failed: {e}")
|
| 201 |
polished_prompt = result
|
| 202 |
else:
|
| 203 |
polished_prompt = result
|
| 204 |
|
| 205 |
polished_prompt = polished_prompt.strip().replace("\n", " ")
|
| 206 |
-
print(f"Polished prompt from HF: {polished_prompt}")
|
| 207 |
return polished_prompt
|
| 208 |
|
| 209 |
except Exception as e:
|
| 210 |
print(f"Error during API call to Hugging Face: {e}")
|
|
|
|
| 211 |
return prompt
|
| 212 |
-
|
| 213 |
-
def
|
| 214 |
-
"""Encode PIL Image to base64 string."""
|
| 215 |
-
buffer = BytesIO()
|
| 216 |
-
img.save(buffer, format="PNG")
|
| 217 |
-
return base64.b64encode(buffer.getvalue()).decode()
|
| 218 |
-
|
| 219 |
-
def suggest_next_scene_prompt_hf(img_list):
|
| 220 |
"""
|
| 221 |
-
|
|
|
|
| 222 |
"""
|
|
|
|
| 223 |
api_key = os.environ.get("HF_TOKEN")
|
| 224 |
-
if not api_key
|
| 225 |
-
|
| 226 |
-
|
|
|
|
|
|
|
| 227 |
try:
|
|
|
|
| 228 |
client = InferenceClient(
|
| 229 |
-
provider="
|
| 230 |
api_key=api_key,
|
| 231 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
messages = [
|
| 234 |
-
{"role": "system", "content":
|
| 235 |
-
{
|
|
|
|
|
|
|
|
|
|
| 236 |
]
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
messages[1]["content"].append(
|
| 240 |
-
{"image": f"data:image/png;base64,{encode_image(img)}"})
|
| 241 |
-
messages[1]["content"].append({"text": "Generate a natural next scene prompt for this image."})
|
| 242 |
-
|
| 243 |
completion = client.chat.completions.create(
|
| 244 |
-
model="Qwen/
|
| 245 |
messages=messages,
|
| 246 |
)
|
| 247 |
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
|
| 252 |
except Exception as e:
|
| 253 |
-
print(f"Error
|
| 254 |
-
|
|
|
|
| 255 |
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
pil_images = []
|
| 264 |
-
for item in images:
|
| 265 |
-
try:
|
| 266 |
-
if isinstance(item[0], Image.Image):
|
| 267 |
-
pil_images.append(item[0].convert("RGB"))
|
| 268 |
-
elif isinstance(item[0], str):
|
| 269 |
-
pil_images.append(Image.open(item[0]).convert("RGB"))
|
| 270 |
-
elif hasattr(item, "name"):
|
| 271 |
-
pil_images.append(Image.open(item.name).convert("RGB"))
|
| 272 |
-
except Exception as e:
|
| 273 |
-
print(f"Error processing image: {e}")
|
| 274 |
-
continue
|
| 275 |
-
|
| 276 |
-
if not pil_images:
|
| 277 |
-
return ""
|
| 278 |
-
|
| 279 |
-
return suggest_next_scene_prompt_hf(pil_images)
|
| 280 |
|
| 281 |
# --- Model Loading ---
|
| 282 |
dtype = torch.bfloat16
|
| 283 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 284 |
|
| 285 |
-
pipe = QwenImageEditPlusPipeline.from_pretrained("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 286 |
pipe.transformer.__class__ = QwenImageTransformer2DModel
|
| 287 |
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
|
| 288 |
|
| 289 |
# --- Ahead-of-time compilation ---
|
| 290 |
-
optimize_pipeline_(pipe, image=Image.new("RGB", (1024, 1024)), prompt="prompt")
|
| 291 |
|
| 292 |
-
# --- Constants ---
|
| 293 |
MAX_SEED = np.iinfo(np.int32).max
|
| 294 |
|
| 295 |
-
# --- Helper Functions ---
|
| 296 |
def use_output_as_input(output_images):
|
| 297 |
-
"""Convert
|
| 298 |
-
if output_images
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
if evt.value is not None:
|
| 325 |
-
return [evt.value]
|
| 326 |
-
return None
|
| 327 |
-
|
| 328 |
-
# --- Inference Function ---
|
| 329 |
-
@spaces.GPU
|
| 330 |
def infer(
|
| 331 |
-
images,
|
| 332 |
-
prompt,
|
| 333 |
-
seed=42,
|
| 334 |
-
randomize_seed=False,
|
| 335 |
-
true_guidance_scale=1.0,
|
| 336 |
-
num_inference_steps=
|
| 337 |
height=None,
|
| 338 |
width=None,
|
| 339 |
-
rewrite_prompt=
|
| 340 |
-
num_images_per_prompt=1
|
|
|
|
| 341 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 342 |
negative_prompt = " "
|
| 343 |
|
| 344 |
if randomize_seed:
|
|
@@ -428,22 +469,6 @@ with gr.Blocks(css=css) as demo:
|
|
| 428 |
result = gr.Gallery(label="Result", show_label=False, type="pil")
|
| 429 |
# Add this button right after the result gallery - initially hidden
|
| 430 |
use_output_btn = gr.Button("↗️ Use as input", variant="secondary", size="sm", visible=False)
|
| 431 |
-
|
| 432 |
-
# Add history section
|
| 433 |
-
gr.Markdown("---")
|
| 434 |
-
with gr.Row():
|
| 435 |
-
gr.Markdown("### 📜 History")
|
| 436 |
-
clear_history_button = gr.Button("🗑️ Clear History", size="sm", variant="stop")
|
| 437 |
-
|
| 438 |
-
history_gallery = gr.Gallery(
|
| 439 |
-
label="Click any image to use as input",
|
| 440 |
-
columns=4,
|
| 441 |
-
rows=2,
|
| 442 |
-
object_fit="contain",
|
| 443 |
-
height="auto",
|
| 444 |
-
interactive=False,
|
| 445 |
-
show_label=True
|
| 446 |
-
)
|
| 447 |
|
| 448 |
with gr.Row():
|
| 449 |
prompt = gr.Text(
|
|
@@ -506,7 +531,6 @@ with gr.Blocks(css=css) as demo:
|
|
| 506 |
|
| 507 |
# gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=False)
|
| 508 |
|
| 509 |
-
# Main generation events
|
| 510 |
gr.on(
|
| 511 |
triggers=[run_button.click, prompt.submit],
|
| 512 |
fn=infer,
|
|
@@ -521,35 +545,15 @@ with gr.Blocks(css=css) as demo:
|
|
| 521 |
width,
|
| 522 |
rewrite_prompt,
|
| 523 |
],
|
| 524 |
-
outputs=[result, seed, use_output_btn],
|
| 525 |
-
).then(
|
| 526 |
-
fn=update_history,
|
| 527 |
-
inputs=[result, history_gallery],
|
| 528 |
-
outputs=history_gallery,
|
| 529 |
-
show_api=False
|
| 530 |
)
|
| 531 |
|
| 532 |
-
# Add the event handler for the "Use Output as Input" button
|
| 533 |
use_output_btn.click(
|
| 534 |
fn=use_output_as_input,
|
| 535 |
inputs=[result],
|
| 536 |
outputs=[input_images]
|
| 537 |
)
|
| 538 |
-
|
| 539 |
-
# History gallery select handler
|
| 540 |
-
history_gallery.select(
|
| 541 |
-
fn=use_history_as_input,
|
| 542 |
-
outputs=[input_images],
|
| 543 |
-
show_api=False
|
| 544 |
-
)
|
| 545 |
-
|
| 546 |
-
# Clear history button
|
| 547 |
-
clear_history_button.click(
|
| 548 |
-
fn=lambda: [],
|
| 549 |
-
inputs=None,
|
| 550 |
-
outputs=history_gallery,
|
| 551 |
-
show_api=False
|
| 552 |
-
)
|
| 553 |
|
| 554 |
input_images.change(fn=suggest_next_scene_prompt, inputs=[input_images], outputs=[prompt])
|
| 555 |
|
|
|
|
| 20 |
import base64
|
| 21 |
from io import BytesIO
|
| 22 |
import json
|
|
|
|
| 23 |
|
| 24 |
SYSTEM_PROMPT = '''
|
| 25 |
# Edit Instruction Rewriter
|
|
|
|
| 93 |
NEXT_SCENE_SYSTEM_PROMPT = '''
|
| 94 |
# Next Scene Prompt Generator
|
| 95 |
You are a cinematic AI director assistant. Your task is to analyze the provided image and generate a compelling "Next Scene" prompt that describes the natural cinematic progression from the current frame.
|
|
|
|
| 96 |
## Core Principles:
|
| 97 |
- Think like a film director: Consider camera dynamics, visual composition, and narrative continuity
|
| 98 |
- Create prompts that flow seamlessly from the current frame
|
| 99 |
- Focus on **visual progression** rather than static modifications
|
| 100 |
- Maintain compositional coherence while introducing organic transitions
|
|
|
|
| 101 |
## Prompt Structure:
|
| 102 |
Always begin with "Next Scene: " followed by your cinematic description.
|
|
|
|
| 103 |
## Key Elements to Include:
|
| 104 |
1. **Camera Movement**: Specify one of these or combinations:
|
| 105 |
- Dolly shots (camera moves toward/away from subject)
|
|
|
|
| 108 |
- Pan left/right
|
| 109 |
- Tilt up/down
|
| 110 |
- Zoom in/out
|
|
|
|
| 111 |
2. **Framing Evolution**: Describe how the shot composition changes:
|
| 112 |
- Wide to close-up transitions
|
| 113 |
- Angle shifts (high angle to eye level, etc.)
|
| 114 |
- Reframing of subjects
|
| 115 |
- Revealing new elements in frame
|
|
|
|
| 116 |
3. **Environmental Reveals** (if applicable):
|
| 117 |
- New characters entering frame
|
| 118 |
- Expanded scenery
|
| 119 |
- Spatial progression
|
| 120 |
- Background elements becoming visible
|
|
|
|
| 121 |
4. **Atmospheric Shifts** (if enhancing the scene):
|
| 122 |
- Lighting changes (golden hour, shadows, lens flare)
|
| 123 |
- Weather evolution
|
| 124 |
- Time-of-day transitions
|
| 125 |
- Depth and mood indicators
|
|
|
|
| 126 |
## Guidelines:
|
| 127 |
- Keep descriptions concise but vivid (2-3 sentences max)
|
| 128 |
- Always specify the camera action first
|
| 129 |
- Focus on what changes between this frame and the next
|
| 130 |
- Maintain the scene's existing style and mood unless intentionally transitioning
|
| 131 |
- Prefer natural, organic progressions over abrupt changes
|
|
|
|
| 132 |
## Example Outputs:
|
| 133 |
- "Next Scene: The camera pulls back from a tight close-up on the airship to a sweeping aerial view, revealing an entire fleet of vessels soaring through a fantasy landscape."
|
| 134 |
- "Next Scene: The camera tracks forward and tilts down, bringing the sun and helicopters closer into frame as a strong lens flare intensifies."
|
| 135 |
- "Next Scene: The camera pans right, removing the dragon and rider from view while revealing more of the floating mountain range in the distance."
|
| 136 |
- "Next Scene: The camera moves slightly forward as sunlight breaks through the clouds, casting a soft glow around the character's silhouette in the mist. Realistic cinematic style, atmospheric depth."
|
|
|
|
| 137 |
## Output Format:
|
| 138 |
Return ONLY the next scene prompt as plain text, starting with "Next Scene: "
|
| 139 |
Do NOT include JSON formatting or additional explanations.
|
|
|
|
| 178 |
result = completion.choices[0].message.content
|
| 179 |
|
| 180 |
# Try to extract JSON if present
|
| 181 |
+
if '{"Rewritten"' in result:
|
| 182 |
try:
|
| 183 |
+
# Clean up the response
|
| 184 |
+
result = result.replace('```json', '').replace('```', '')
|
| 185 |
+
result_json = json.loads(result)
|
| 186 |
+
polished_prompt = result_json.get('Rewritten', result)
|
| 187 |
+
except:
|
|
|
|
|
|
|
|
|
|
| 188 |
polished_prompt = result
|
| 189 |
else:
|
| 190 |
polished_prompt = result
|
| 191 |
|
| 192 |
polished_prompt = polished_prompt.strip().replace("\n", " ")
|
|
|
|
| 193 |
return polished_prompt
|
| 194 |
|
| 195 |
except Exception as e:
|
| 196 |
print(f"Error during API call to Hugging Face: {e}")
|
| 197 |
+
# Fallback to original prompt if enhancement fails
|
| 198 |
return prompt
|
| 199 |
+
|
| 200 |
+
def next_scene_prompt(original_prompt, img_list):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
"""
|
| 202 |
+
Rewrites the prompt using a Hugging Face InferenceClient.
|
| 203 |
+
Supports multiple images via img_list.
|
| 204 |
"""
|
| 205 |
+
# Ensure HF_TOKEN is set
|
| 206 |
api_key = os.environ.get("HF_TOKEN")
|
| 207 |
+
if not api_key:
|
| 208 |
+
print("Warning: HF_TOKEN not set. Falling back to original prompt.")
|
| 209 |
+
return original_prompt
|
| 210 |
+
prompt = f"{NEXT_SCENE_SYSTEM_PROMPT}"
|
| 211 |
+
system_prompt = "you are a helpful assistant, you should provide useful answers to users."
|
| 212 |
try:
|
| 213 |
+
# Initialize the client
|
| 214 |
client = InferenceClient(
|
| 215 |
+
provider="nebius",
|
| 216 |
api_key=api_key,
|
| 217 |
)
|
| 218 |
+
|
| 219 |
+
# Convert list of images to base64 data URLs
|
| 220 |
+
image_urls = []
|
| 221 |
+
if img_list is not None:
|
| 222 |
+
# Ensure img_list is actually a list
|
| 223 |
+
if not isinstance(img_list, list):
|
| 224 |
+
img_list = [img_list]
|
| 225 |
+
|
| 226 |
+
for img in img_list:
|
| 227 |
+
image_url = None
|
| 228 |
+
# If img is a PIL Image
|
| 229 |
+
if hasattr(img, 'save'): # Check if it's a PIL Image
|
| 230 |
+
buffered = BytesIO()
|
| 231 |
+
img.save(buffered, format="PNG")
|
| 232 |
+
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
| 233 |
+
image_url = f"data:image/png;base64,{img_base64}"
|
| 234 |
+
# If img is already a file path (string)
|
| 235 |
+
elif isinstance(img, str):
|
| 236 |
+
with open(img, "rb") as image_file:
|
| 237 |
+
img_base64 = base64.b64encode(image_file.read()).decode('utf-8')
|
| 238 |
+
image_url = f"data:image/png;base64,{img_base64}"
|
| 239 |
+
else:
|
| 240 |
+
print(f"Warning: Unexpected image type: {type(img)}, skipping...")
|
| 241 |
+
continue
|
| 242 |
+
|
| 243 |
+
if image_url:
|
| 244 |
+
image_urls.append(image_url)
|
| 245 |
+
|
| 246 |
+
# Build the content array with text first, then all images
|
| 247 |
+
content = [
|
| 248 |
+
{
|
| 249 |
+
"type": "text",
|
| 250 |
+
"text": prompt
|
| 251 |
+
}
|
| 252 |
+
]
|
| 253 |
|
| 254 |
+
# Add all images to the content
|
| 255 |
+
for image_url in image_urls:
|
| 256 |
+
content.append({
|
| 257 |
+
"type": "image_url",
|
| 258 |
+
"image_url": {
|
| 259 |
+
"url": image_url
|
| 260 |
+
}
|
| 261 |
+
})
|
| 262 |
+
|
| 263 |
+
# Format the messages for the chat completions API
|
| 264 |
messages = [
|
| 265 |
+
{"role": "system", "content": system_prompt},
|
| 266 |
+
{
|
| 267 |
+
"role": "user",
|
| 268 |
+
"content": content
|
| 269 |
+
}
|
| 270 |
]
|
| 271 |
+
|
| 272 |
+
# Call the API
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
completion = client.chat.completions.create(
|
| 274 |
+
model="Qwen/Qwen2.5-VL-72B-Instruct",
|
| 275 |
messages=messages,
|
| 276 |
)
|
| 277 |
|
| 278 |
+
# Parse the response
|
| 279 |
+
result = completion.choices[0].message.content
|
| 280 |
+
|
| 281 |
+
# Try to extract JSON if present
|
| 282 |
+
if '"Rewritten"' in result:
|
| 283 |
+
try:
|
| 284 |
+
# Clean up the response
|
| 285 |
+
result = result.replace('```json', '').replace('```', '')
|
| 286 |
+
result_json = json.loads(result)
|
| 287 |
+
polished_prompt = result_json.get('Rewritten', result)
|
| 288 |
+
except:
|
| 289 |
+
polished_prompt = result
|
| 290 |
+
else:
|
| 291 |
+
polished_prompt = result
|
| 292 |
+
|
| 293 |
+
polished_prompt = polished_prompt.strip().replace("\n", " ")
|
| 294 |
+
return polished_prompt
|
| 295 |
|
| 296 |
except Exception as e:
|
| 297 |
+
print(f"Error during API call to Hugging Face: {e}")
|
| 298 |
+
# Fallback to original prompt if enhancement fails
|
| 299 |
+
return original_prompt
|
| 300 |
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
def encode_image(pil_image):
|
| 304 |
+
import io
|
| 305 |
+
buffered = io.BytesIO()
|
| 306 |
+
pil_image.save(buffered, format="PNG")
|
| 307 |
+
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 308 |
|
| 309 |
# --- Model Loading ---
|
| 310 |
dtype = torch.bfloat16
|
| 311 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 312 |
|
| 313 |
+
pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509",
|
| 314 |
+
transformer= QwenImageTransformer2DModel.from_pretrained("linoyts/Qwen-Image-Edit-Rapid-AIO",
|
| 315 |
+
subfolder='transformer',
|
| 316 |
+
torch_dtype=dtype,
|
| 317 |
+
device_map='cuda'),torch_dtype=dtype).to(device)
|
| 318 |
+
|
| 319 |
+
pipe.load_lora_weights(
|
| 320 |
+
"lovis93/next-scene-qwen-image-lora-2509",
|
| 321 |
+
weight_name="next-scene_lora-v2-3000.safetensors", adapter_name="next-scene"
|
| 322 |
+
)
|
| 323 |
+
pipe.set_adapters(["next-scene"], adapter_weights=[1.])
|
| 324 |
+
pipe.fuse_lora(adapter_names=["next-scene"], lora_scale=1.)
|
| 325 |
+
pipe.unload_lora_weights()
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
# Apply the same optimizations from the first version
|
| 329 |
pipe.transformer.__class__ = QwenImageTransformer2DModel
|
| 330 |
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
|
| 331 |
|
| 332 |
# --- Ahead-of-time compilation ---
|
| 333 |
+
optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt")
|
| 334 |
|
| 335 |
+
# --- UI Constants and Helpers ---
|
| 336 |
MAX_SEED = np.iinfo(np.int32).max
|
| 337 |
|
|
|
|
| 338 |
def use_output_as_input(output_images):
|
| 339 |
+
"""Convert output images to input format for the gallery"""
|
| 340 |
+
if output_images is None or len(output_images) == 0:
|
| 341 |
+
return []
|
| 342 |
+
return output_images
|
| 343 |
+
|
| 344 |
+
def suggest_next_scene_prompt(images):
|
| 345 |
+
pil_images = []
|
| 346 |
+
if images is not None:
|
| 347 |
+
for item in images:
|
| 348 |
+
try:
|
| 349 |
+
if isinstance(item[0], Image.Image):
|
| 350 |
+
pil_images.append(item[0].convert("RGB"))
|
| 351 |
+
elif isinstance(item[0], str):
|
| 352 |
+
pil_images.append(Image.open(item[0]).convert("RGB"))
|
| 353 |
+
elif hasattr(item, "name"):
|
| 354 |
+
pil_images.append(Image.open(item.name).convert("RGB"))
|
| 355 |
+
except Exception:
|
| 356 |
+
continue
|
| 357 |
+
if len(pil_images) > 0:
|
| 358 |
+
prompt = next_scene_prompt("", pil_images)
|
| 359 |
+
else:
|
| 360 |
+
prompt = ""
|
| 361 |
+
print("next scene prompt: ", prompt)
|
| 362 |
+
return prompt
|
| 363 |
+
|
| 364 |
+
# --- Main Inference Function (with hardcoded negative prompt) ---
|
| 365 |
+
@spaces.GPU(duration=300)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 366 |
def infer(
|
| 367 |
+
images,
|
| 368 |
+
prompt,
|
| 369 |
+
seed=42,
|
| 370 |
+
randomize_seed=False,
|
| 371 |
+
true_guidance_scale=1.0,
|
| 372 |
+
num_inference_steps=4,
|
| 373 |
height=None,
|
| 374 |
width=None,
|
| 375 |
+
rewrite_prompt=True,
|
| 376 |
+
num_images_per_prompt=1,
|
| 377 |
+
progress=gr.Progress(track_tqdm=True),
|
| 378 |
):
|
| 379 |
+
"""
|
| 380 |
+
Generates an image using the local Qwen-Image diffusers pipeline.
|
| 381 |
+
"""
|
| 382 |
+
# Hardcode the negative prompt as requested
|
| 383 |
negative_prompt = " "
|
| 384 |
|
| 385 |
if randomize_seed:
|
|
|
|
| 469 |
result = gr.Gallery(label="Result", show_label=False, type="pil")
|
| 470 |
# Add this button right after the result gallery - initially hidden
|
| 471 |
use_output_btn = gr.Button("↗️ Use as input", variant="secondary", size="sm", visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 472 |
|
| 473 |
with gr.Row():
|
| 474 |
prompt = gr.Text(
|
|
|
|
| 531 |
|
| 532 |
# gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=False)
|
| 533 |
|
|
|
|
| 534 |
gr.on(
|
| 535 |
triggers=[run_button.click, prompt.submit],
|
| 536 |
fn=infer,
|
|
|
|
| 545 |
width,
|
| 546 |
rewrite_prompt,
|
| 547 |
],
|
| 548 |
+
outputs=[result, seed, use_output_btn], # Added use_output_btn to outputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 549 |
)
|
| 550 |
|
| 551 |
+
# Add the new event handler for the "Use Output as Input" button
|
| 552 |
use_output_btn.click(
|
| 553 |
fn=use_output_as_input,
|
| 554 |
inputs=[result],
|
| 555 |
outputs=[input_images]
|
| 556 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 557 |
|
| 558 |
input_images.change(fn=suggest_next_scene_prompt, inputs=[input_images], outputs=[prompt])
|
| 559 |
|