Spaces:
Running
Running
Commit
·
556f1d5
1
Parent(s):
c0a528b
sss code
Browse files
app.py
CHANGED
|
@@ -1,4 +1,301 @@
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import json
|
| 3 |
+
from typing import List
|
| 4 |
+
from fastembed import LateInteractionTextEmbedding, TextEmbedding
|
| 5 |
+
from fastembed import SparseTextEmbedding, SparseEmbedding
|
| 6 |
+
from qdrant_client import QdrantClient, models
|
| 7 |
+
from tokenizers import Tokenizer
|
| 8 |
|
| 9 |
+
#############################
|
| 10 |
+
# 1. Utility / Helper Code
|
| 11 |
+
#############################
|
| 12 |
+
|
| 13 |
+
@st.cache_resource
|
| 14 |
+
def load_tokenizer():
|
| 15 |
+
"""
|
| 16 |
+
Load the tokenizer for interpreting sparse embeddings (optional usage).
|
| 17 |
+
"""
|
| 18 |
+
return Tokenizer.from_pretrained(SparseTextEmbedding.list_supported_models()[0]["sources"]["hf"])
|
| 19 |
+
|
| 20 |
+
@st.cache_resource
|
| 21 |
+
def load_models():
|
| 22 |
+
"""
|
| 23 |
+
Load/initialize your models once and cache them.
|
| 24 |
+
"""
|
| 25 |
+
# Dense embedding model
|
| 26 |
+
dense_embedding_model = TextEmbedding("BAAI/bge-small-en-v1.5")
|
| 27 |
+
|
| 28 |
+
# Late interaction model (ColBERTv2)
|
| 29 |
+
late_embedding_model = LateInteractionTextEmbedding("colbert-ir/colbertv2.0")
|
| 30 |
+
|
| 31 |
+
# Sparse embedding model
|
| 32 |
+
sparse_model_name = "Qdrant/bm25"
|
| 33 |
+
sparse_model = SparseTextEmbedding(model_name=sparse_model_name)
|
| 34 |
+
|
| 35 |
+
return dense_embedding_model, late_embedding_model, sparse_model
|
| 36 |
+
|
| 37 |
+
def build_qdrant_index(data):
|
| 38 |
+
"""
|
| 39 |
+
Given the parsed data (list of items), build an in-memory Qdrant index
|
| 40 |
+
with dense, late, and sparse vectors.
|
| 41 |
+
"""
|
| 42 |
+
# Extract fields
|
| 43 |
+
items = data["items"]
|
| 44 |
+
descriptions = [f"{item['name']} - {item['description']}" for item in items]
|
| 45 |
+
names = [item["name"] for item in items]
|
| 46 |
+
metadata = [
|
| 47 |
+
{"name": item["name"]} # You can store more fields if you like
|
| 48 |
+
for item in items
|
| 49 |
+
]
|
| 50 |
+
|
| 51 |
+
# Load models
|
| 52 |
+
dense_embedding_model, late_embedding_model, sparse_model = load_models()
|
| 53 |
+
|
| 54 |
+
# Generate embeddings
|
| 55 |
+
dense_embeddings = list(dense_embedding_model.embed(descriptions))
|
| 56 |
+
name_dense_embeddings = list(dense_embedding_model.embed(names))
|
| 57 |
+
late_embeddings = list(late_embedding_model.embed(descriptions))
|
| 58 |
+
sparse_embeddings: List[SparseEmbedding] = list(sparse_model.embed(descriptions, batch_size=6))
|
| 59 |
+
|
| 60 |
+
# Create an in-memory Qdrant instance
|
| 61 |
+
qdrant_client = QdrantClient(":memory:")
|
| 62 |
+
|
| 63 |
+
# Create collection schema
|
| 64 |
+
qdrant_client.create_collection(
|
| 65 |
+
collection_name="items",
|
| 66 |
+
vectors_config={
|
| 67 |
+
"dense": models.VectorParams(
|
| 68 |
+
size=len(dense_embeddings[0]),
|
| 69 |
+
distance=models.Distance.COSINE,
|
| 70 |
+
),
|
| 71 |
+
"late": models.VectorParams(
|
| 72 |
+
size=len(late_embeddings[0][0]),
|
| 73 |
+
distance=models.Distance.COSINE,
|
| 74 |
+
multivector_config=models.MultiVectorConfig(
|
| 75 |
+
comparator=models.MultiVectorComparator.MAX_SIM
|
| 76 |
+
),
|
| 77 |
+
),
|
| 78 |
+
},
|
| 79 |
+
sparse_vectors_config={
|
| 80 |
+
"sparse": models.SparseVectorParams(
|
| 81 |
+
modifier=models.Modifier.IDF,
|
| 82 |
+
),
|
| 83 |
+
}
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
# Upload points
|
| 87 |
+
points = []
|
| 88 |
+
for idx, _ in enumerate(metadata):
|
| 89 |
+
points.append(
|
| 90 |
+
models.PointStruct(
|
| 91 |
+
id=idx,
|
| 92 |
+
payload=metadata[idx],
|
| 93 |
+
vector={
|
| 94 |
+
"late": late_embeddings[idx].tolist(),
|
| 95 |
+
"dense": dense_embeddings[idx],
|
| 96 |
+
"sparse": sparse_embeddings[idx].as_object(),
|
| 97 |
+
},
|
| 98 |
+
)
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
qdrant_client.upload_points(
|
| 102 |
+
collection_name="items",
|
| 103 |
+
points=points,
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
return qdrant_client
|
| 107 |
+
|
| 108 |
+
def run_queries(qdrant_client, query_text):
|
| 109 |
+
"""
|
| 110 |
+
Run all the different query types and return results in a dictionary.
|
| 111 |
+
"""
|
| 112 |
+
# Load models
|
| 113 |
+
dense_embedding_model, late_embedding_model, sparse_model = load_models()
|
| 114 |
+
|
| 115 |
+
# Generate single-query embeddings
|
| 116 |
+
dense_query = next(dense_embedding_model.query_embed(query_text))
|
| 117 |
+
late_query = next(late_embedding_model.query_embed(query_text))
|
| 118 |
+
sparse_query = next(sparse_model.query_embed(query_text))
|
| 119 |
+
|
| 120 |
+
# For the fusion approach, we need a list form for prefetch
|
| 121 |
+
tsq = list(sparse_model.embed(query_text, batch_size=6))
|
| 122 |
+
|
| 123 |
+
# We'll store top-5 results for each approach
|
| 124 |
+
results = {}
|
| 125 |
+
|
| 126 |
+
# 1) ColBERT (late)
|
| 127 |
+
results["C"] = qdrant_client.query_points(
|
| 128 |
+
collection_name="items",
|
| 129 |
+
query=late_query,
|
| 130 |
+
using="late",
|
| 131 |
+
limit=5,
|
| 132 |
+
with_payload=True
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
# 2) Sparse only
|
| 136 |
+
results["S"] = qdrant_client.query_points(
|
| 137 |
+
collection_name="items",
|
| 138 |
+
query=models.SparseVector(**sparse_query.as_object()),
|
| 139 |
+
using="sparse",
|
| 140 |
+
limit=5,
|
| 141 |
+
with_payload=True
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
# 3) Dense only
|
| 145 |
+
results["D"] = qdrant_client.query_points(
|
| 146 |
+
collection_name="items",
|
| 147 |
+
query=dense_query,
|
| 148 |
+
using="dense",
|
| 149 |
+
limit=5,
|
| 150 |
+
with_payload=True
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
# 4) Hybrid fusion (RRF for Sparse+Dense)
|
| 154 |
+
results["S+D-F"] = qdrant_client.query_points(
|
| 155 |
+
collection_name="items",
|
| 156 |
+
prefetch=[
|
| 157 |
+
models.Prefetch(
|
| 158 |
+
query=dense_query,
|
| 159 |
+
using="dense",
|
| 160 |
+
limit=100,
|
| 161 |
+
),
|
| 162 |
+
models.Prefetch(
|
| 163 |
+
query=tsq[0].as_object(),
|
| 164 |
+
using="sparse",
|
| 165 |
+
limit=50,
|
| 166 |
+
)
|
| 167 |
+
],
|
| 168 |
+
query=models.FusionQuery(fusion=models.Fusion.RRF),
|
| 169 |
+
limit=5,
|
| 170 |
+
with_payload=True
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
# 5) Hybrid fusion + ColBERT
|
| 174 |
+
sparse_dense_prefetch = models.Prefetch(
|
| 175 |
+
prefetch=[
|
| 176 |
+
models.Prefetch(query=dense_query, using="dense", limit=100),
|
| 177 |
+
models.Prefetch(query=tsq[0].as_object(), using="sparse", limit=50),
|
| 178 |
+
],
|
| 179 |
+
limit=10,
|
| 180 |
+
query=models.FusionQuery(fusion=models.Fusion.RRF),
|
| 181 |
+
)
|
| 182 |
+
results["S+D-F-C"] = qdrant_client.query_points(
|
| 183 |
+
collection_name="items",
|
| 184 |
+
prefetch=[sparse_dense_prefetch],
|
| 185 |
+
query=late_query,
|
| 186 |
+
using="late",
|
| 187 |
+
limit=5,
|
| 188 |
+
with_payload=True
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
# 6) Hybrid no-fusion + ColBERT
|
| 192 |
+
old_prefetch = models.Prefetch(
|
| 193 |
+
prefetch=[
|
| 194 |
+
models.Prefetch(
|
| 195 |
+
prefetch=[
|
| 196 |
+
models.Prefetch(query=dense_query, using="dense", limit=100)
|
| 197 |
+
],
|
| 198 |
+
query=tsq[0].as_object(),
|
| 199 |
+
using="sparse",
|
| 200 |
+
limit=50,
|
| 201 |
+
)
|
| 202 |
+
]
|
| 203 |
+
)
|
| 204 |
+
results["S+D-C"] = qdrant_client.query_points(
|
| 205 |
+
collection_name="items",
|
| 206 |
+
prefetch=[old_prefetch],
|
| 207 |
+
query=late_query,
|
| 208 |
+
using="late",
|
| 209 |
+
limit=5,
|
| 210 |
+
with_payload=True
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
return results
|
| 214 |
+
|
| 215 |
+
#############################
|
| 216 |
+
# 2. Streamlit Main App
|
| 217 |
+
#############################
|
| 218 |
+
|
| 219 |
+
def main():
|
| 220 |
+
st.title("Semantic Search Sandbox")
|
| 221 |
+
|
| 222 |
+
# Initialize session state if not present
|
| 223 |
+
if "json_loaded" not in st.session_state:
|
| 224 |
+
st.session_state["json_loaded"] = False
|
| 225 |
+
if "qdrant_client" not in st.session_state:
|
| 226 |
+
st.session_state["qdrant_client"] = None
|
| 227 |
+
|
| 228 |
+
#######################################
|
| 229 |
+
# Show JSON input only if not loaded
|
| 230 |
+
#######################################
|
| 231 |
+
if not st.session_state["json_loaded"]:
|
| 232 |
+
st.subheader("Paste items.json Here")
|
| 233 |
+
default_json = """
|
| 234 |
+
{
|
| 235 |
+
"items": [
|
| 236 |
+
{
|
| 237 |
+
"name": "Example1",
|
| 238 |
+
"description": "An example item"
|
| 239 |
+
},
|
| 240 |
+
{
|
| 241 |
+
"name": "Example2",
|
| 242 |
+
"description": "Another item for demonstration"
|
| 243 |
+
}
|
| 244 |
+
]
|
| 245 |
+
}
|
| 246 |
+
""".strip()
|
| 247 |
+
|
| 248 |
+
json_text = st.text_area("JSON Input", value=default_json, height=300)
|
| 249 |
+
|
| 250 |
+
if st.button("Load JSON"):
|
| 251 |
+
try:
|
| 252 |
+
data = json.loads(json_text)
|
| 253 |
+
# Build Qdrant index in memory
|
| 254 |
+
st.session_state["qdrant_client"] = build_qdrant_index(data)
|
| 255 |
+
st.session_state["json_loaded"] = True
|
| 256 |
+
st.success("JSON loaded and Qdrant index built successfully!")
|
| 257 |
+
st.rerun()
|
| 258 |
+
except Exception as e:
|
| 259 |
+
st.error(f"Error parsing JSON: {e}")
|
| 260 |
+
|
| 261 |
+
else:
|
| 262 |
+
# The data is loaded, show a button to reset if you want to load new JSON
|
| 263 |
+
if st.button("Load a different JSON"):
|
| 264 |
+
st.session_state["json_loaded"] = False
|
| 265 |
+
st.session_state["qdrant_client"] = None
|
| 266 |
+
#st.experimental_rerun() # Refresh the page
|
| 267 |
+
else:
|
| 268 |
+
# Show the search interface
|
| 269 |
+
query_text = st.text_input("Search Query", value="ACB 1.0 Ports")
|
| 270 |
+
if st.button("Search"):
|
| 271 |
+
if st.session_state["qdrant_client"] is None:
|
| 272 |
+
st.warning("Please load valid JSON first.")
|
| 273 |
+
return
|
| 274 |
+
|
| 275 |
+
# Run queries
|
| 276 |
+
results_dict = run_queries(st.session_state["qdrant_client"], query_text)
|
| 277 |
+
|
| 278 |
+
# Display results in columns
|
| 279 |
+
col_names = list(results_dict.keys())
|
| 280 |
+
# You can split into multiple rows if there are more than 3
|
| 281 |
+
n_cols = 3
|
| 282 |
+
# We'll create enough columns to handle all search types
|
| 283 |
+
rows_needed = (len(col_names) + n_cols - 1) // n_cols
|
| 284 |
+
|
| 285 |
+
for row_idx in range(rows_needed):
|
| 286 |
+
cols = st.columns(n_cols)
|
| 287 |
+
for col_idx in range(n_cols):
|
| 288 |
+
method_idx = row_idx * n_cols + col_idx
|
| 289 |
+
if method_idx < len(col_names):
|
| 290 |
+
method = col_names[method_idx]
|
| 291 |
+
qdrant_result = results_dict[method]
|
| 292 |
+
|
| 293 |
+
with cols[col_idx]:
|
| 294 |
+
st.markdown(f"### {method}")
|
| 295 |
+
for point in qdrant_result.points:
|
| 296 |
+
name = point.payload.get("name", "Unnamed")
|
| 297 |
+
score = round(point.score, 4) if point.score else "N/A"
|
| 298 |
+
st.write(f"- **{name}** (score={score})")
|
| 299 |
+
|
| 300 |
+
if __name__ == "__main__":
|
| 301 |
+
main()
|