Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,6 +4,11 @@ from huggingface_hub import snapshot_download
|
|
| 4 |
from langchain.embeddings import SentenceTransformerEmbeddings
|
| 5 |
from langchain_community.vectorstores import Chroma
|
| 6 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
# =========================================================
|
| 9 |
# Step 1: Download Vectorstore from Hugging Face Dataset
|
|
@@ -36,11 +41,92 @@ print("Chroma vectorstore loaded successfully!")
|
|
| 36 |
# Step 3: Load LLM
|
| 37 |
# =============================
|
| 38 |
qa_model = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.2")
|
| 39 |
-
|
| 40 |
# =============================
|
| 41 |
# Step 4: RAG Response Function
|
| 42 |
# =============================
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
# -----------------------
|
| 45 |
# User Query Enrichment
|
| 46 |
# -----------------------
|
|
|
|
| 4 |
from langchain.embeddings import SentenceTransformerEmbeddings
|
| 5 |
from langchain_community.vectorstores import Chroma
|
| 6 |
from transformers import pipeline
|
| 7 |
+
from langchain_community.llms import HuggingFacePipeline
|
| 8 |
+
from langchain.chains import LLMChain
|
| 9 |
+
from langchain.prompts import PromptTemplate
|
| 10 |
+
import spacy
|
| 11 |
+
import json
|
| 12 |
|
| 13 |
# =========================================================
|
| 14 |
# Step 1: Download Vectorstore from Hugging Face Dataset
|
|
|
|
| 41 |
# Step 3: Load LLM
|
| 42 |
# =============================
|
| 43 |
qa_model = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.2")
|
| 44 |
+
llm = HuggingFacePipeline(pipeline=qa_model)
|
| 45 |
# =============================
|
| 46 |
# Step 4: RAG Response Function
|
| 47 |
# =============================
|
| 48 |
|
| 49 |
+
# Load spaCy NER model
|
| 50 |
+
nlp = spacy.load("en_core_web_sm")
|
| 51 |
+
|
| 52 |
+
# --- spaCy Extraction ---
|
| 53 |
+
def extract_with_spacy(text):
|
| 54 |
+
doc = nlp(text)
|
| 55 |
+
roles, locations, departments = [], [], []
|
| 56 |
+
|
| 57 |
+
for ent in doc.ents:
|
| 58 |
+
if ent.label_ in ["GPE", "LOC"]: # e.g., "Singapore"
|
| 59 |
+
locations.append(ent.text)
|
| 60 |
+
elif ent.label_ in ["ORG"]: # e.g., "HR", "Finance"
|
| 61 |
+
departments.append(ent.text)
|
| 62 |
+
elif ent.label_ in ["PERSON"]: # sometimes job titles slip
|
| 63 |
+
roles.append(ent.text)
|
| 64 |
+
|
| 65 |
+
return {
|
| 66 |
+
"roles": list(set(roles)),
|
| 67 |
+
"locations": list(set(locations)),
|
| 68 |
+
"departments": list(set(departments))
|
| 69 |
+
}
|
| 70 |
+
|
| 71 |
+
# --- LLM Extraction ---
|
| 72 |
+
def extract_with_llm(text):
|
| 73 |
+
prompt = f"""
|
| 74 |
+
You are an expert HR assistant for an airline company.
|
| 75 |
+
|
| 76 |
+
Your Task:
|
| 77 |
+
- Extract **Role(s)**, **Location(s)**, and **Department(s)** explicitly or implicitly mentioned
|
| 78 |
+
in the following HR policy text.
|
| 79 |
+
- Focus on aviation-related roles (e.g., Pilot, Cabin Crew, Engineer, Ground Staff, Field Staff),
|
| 80 |
+
locations (e.g., India, UK, Singapore, Headquarters), and departments (e.g., HR, Finance, Compliance, Operations).
|
| 81 |
+
- If something is implied (e.g., "field staff" → role=Field Staff, location unspecified), capture it.
|
| 82 |
+
- If no information is found, return an empty list for that field.
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
---
|
| 87 |
+
### FEW SHOTS Examples
|
| 88 |
+
Text: "Special leave for cabin crew in Singapore"
|
| 89 |
+
Output: {{"roles": ["Cabin Crew"], "locations": ["Singapore"], "departments": []}}
|
| 90 |
+
|
| 91 |
+
Text: "Pilots based in UK headquarters"
|
| 92 |
+
Output: {{"roles": ["Pilot"], "locations": ["United Kingdom", "Headquarters"], "departments": []}}
|
| 93 |
+
|
| 94 |
+
Text: "HR staff policies in India"
|
| 95 |
+
Output: {{"roles": [], "locations": ["India"], "departments": ["HR"]}}
|
| 96 |
+
|
| 97 |
+
Text: "Field staff in Dubai get separate insurance policy"
|
| 98 |
+
Output: {{"roles": ["Field Staff"], "locations": ["Dubai"], "departments": []}}
|
| 99 |
+
|
| 100 |
+
---
|
| 101 |
+
Now extract from:
|
| 102 |
+
{text}
|
| 103 |
+
|
| 104 |
+
Output:
|
| 105 |
+
Return only valid JSON in this exact schema:
|
| 106 |
+
{{
|
| 107 |
+
"roles": [list of roles],
|
| 108 |
+
"locations": [list of locations],
|
| 109 |
+
"departments": [list of departments]
|
| 110 |
+
}}
|
| 111 |
+
|
| 112 |
+
"""
|
| 113 |
+
|
| 114 |
+
try:
|
| 115 |
+
response = llm.invoke(prompt)
|
| 116 |
+
content = response.content.strip()
|
| 117 |
+
|
| 118 |
+
# Enforce safe parsing
|
| 119 |
+
if content.startswith("{"):
|
| 120 |
+
extracted = json.loads(content)
|
| 121 |
+
else:
|
| 122 |
+
extracted = {"roles": [], "locations": [], "departments": []}
|
| 123 |
+
|
| 124 |
+
except Exception:
|
| 125 |
+
extracted = {"roles": [], "locations": [], "departments": []}
|
| 126 |
+
|
| 127 |
+
return extracted
|
| 128 |
+
|
| 129 |
+
|
| 130 |
# -----------------------
|
| 131 |
# User Query Enrichment
|
| 132 |
# -----------------------
|