naveen07garg commited on
Commit
6a02815
·
verified ·
1 Parent(s): 7b9c5b8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -13
app.py CHANGED
@@ -133,9 +133,9 @@ def extract_with_llm(text):
133
  def extract_metadata_from_query(query: str):
134
  """Use spaCy + LLM to extract role/location/department from user query."""
135
  spacy_res = extract_with_spacy(query)
136
- logging.info("spaCy results ## ==>%s", spacy_res)
137
  llm_res = extract_with_llm(query)
138
- logging.info("LLM Extraction Results ## ==>%s", llm_res)
139
 
140
 
141
  return {
@@ -187,31 +187,31 @@ def generate_rag_based_response(user_input, retriever, k=3, max_tokens=800, temp
187
  # Step 1: Extract personalization metadata from query
188
  query_metadata = extract_metadata_from_query(user_input)
189
 
190
- logging.info("\n======================")
191
- logging.info("User Query: %s", user_input)
192
- logging.info("Extracted metadata from query: %s", query_metadata) # Investigatory log
193
 
194
  # 2. Retrieve top-k docs semantically
195
  retrieved_docs = retriever.get_relevant_documents(user_input, k=k)
196
- logging.info("Retrieved %d docs before filtering", len(retrieved_docs))
197
 
198
  # 3. Apply metadata filtering
199
  filtered_docs = filter_docs_by_metadata(retrieved_docs, query_metadata)
200
  if filtered_docs:
201
  selected_docs = filtered_docs
202
- logging.info("✅ %d docs kept after metadata filtering", len(selected_docs))
203
  else:
204
  selected_docs = retrieved_docs # fallback if no metadata match
205
- logging.info("⚠️ No metadata match, falling back to semantic retrieval only")
206
 
207
 
208
 
209
  # Step 4: Log retrieved docs metadata
210
- logging.info("✅ Retrieved %d docs", len(selected_docs))
211
  for i, d in enumerate(selected_docs, 1):
212
- logging.info("\n--- Chunk %d ---", i)
213
- logging.info("Text: %s...", d.page_content[:200]) # preview first 200 chars
214
- logging.info("Metadata: %s", d.metadata)
215
 
216
 
217
 
@@ -358,4 +358,3 @@ gr.ChatInterface(
358
  ).launch()
359
 
360
 
361
-
 
133
  def extract_metadata_from_query(query: str):
134
  """Use spaCy + LLM to extract role/location/department from user query."""
135
  spacy_res = extract_with_spacy(query)
136
+ print("spaCy results ## ==>%s", spacy_res)
137
  llm_res = extract_with_llm(query)
138
+ print("LLM Extraction Results ## ==>%s", llm_res)
139
 
140
 
141
  return {
 
187
  # Step 1: Extract personalization metadata from query
188
  query_metadata = extract_metadata_from_query(user_input)
189
 
190
+ print("\n======================")
191
+ print("User Query: %s", user_input)
192
+ print("Extracted metadata from query: %s", query_metadata) # Investigatory log
193
 
194
  # 2. Retrieve top-k docs semantically
195
  retrieved_docs = retriever.get_relevant_documents(user_input, k=k)
196
+ print("Retrieved %d docs before filtering", len(retrieved_docs))
197
 
198
  # 3. Apply metadata filtering
199
  filtered_docs = filter_docs_by_metadata(retrieved_docs, query_metadata)
200
  if filtered_docs:
201
  selected_docs = filtered_docs
202
+ print("✅ %d docs kept after metadata filtering", len(selected_docs))
203
  else:
204
  selected_docs = retrieved_docs # fallback if no metadata match
205
+ print("⚠️ No metadata match, falling back to semantic retrieval only")
206
 
207
 
208
 
209
  # Step 4: Log retrieved docs metadata
210
+ print("✅ Retrieved %d docs", len(selected_docs))
211
  for i, d in enumerate(selected_docs, 1):
212
+ print("\n--- Chunk %d ---", i)
213
+ print("Text: %s...", d.page_content[:200]) # preview first 200 chars
214
+ print("Metadata: %s", d.metadata)
215
 
216
 
217
 
 
358
  ).launch()
359
 
360