Spaces:
Runtime error
Runtime error
Upload 7 files
Browse files- 0.png +0 -0
- 1.png +0 -0
- 5.png +0 -0
- app.py +338 -0
- requirements.txt +3 -0
- utils.py +105 -0
- valset.pkl +3 -0
0.png
ADDED
|
1.png
ADDED
|
5.png
ADDED
|
app.py
ADDED
|
@@ -0,0 +1,338 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
import requests
|
| 5 |
+
import random
|
| 6 |
+
import os
|
| 7 |
+
import sys
|
| 8 |
+
import pickle
|
| 9 |
+
from PIL import Image
|
| 10 |
+
|
| 11 |
+
from tqdm.auto import tqdm
|
| 12 |
+
from datetime import datetime
|
| 13 |
+
|
| 14 |
+
import diffusers
|
| 15 |
+
from diffusers import DDIMScheduler
|
| 16 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
| 17 |
+
import torch.nn.functional as F
|
| 18 |
+
|
| 19 |
+
from utils import preprocess_mask, process_sketch, process_prompts, process_example
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
#################################################
|
| 23 |
+
#################################################
|
| 24 |
+
canvas_html = "<div id='canvas-root' style='max-width:400px; margin: 0 auto'></div>"
|
| 25 |
+
load_js = """
|
| 26 |
+
async () => {
|
| 27 |
+
const url = "https://huggingface.co/datasets/radames/gradio-components/raw/main/sketch-canvas.js"
|
| 28 |
+
fetch(url)
|
| 29 |
+
.then(res => res.text())
|
| 30 |
+
.then(text => {
|
| 31 |
+
const script = document.createElement('script');
|
| 32 |
+
script.type = "module"
|
| 33 |
+
script.src = URL.createObjectURL(new Blob([text], { type: 'application/javascript' }));
|
| 34 |
+
document.head.appendChild(script);
|
| 35 |
+
});
|
| 36 |
+
}
|
| 37 |
+
"""
|
| 38 |
+
|
| 39 |
+
get_js_colors = """
|
| 40 |
+
async (canvasData) => {
|
| 41 |
+
const canvasEl = document.getElementById("canvas-root");
|
| 42 |
+
return [canvasEl._data]
|
| 43 |
+
}
|
| 44 |
+
"""
|
| 45 |
+
|
| 46 |
+
css = '''
|
| 47 |
+
#color-bg{display:flex;justify-content: center;align-items: center;}
|
| 48 |
+
.color-bg-item{width: 100%; height: 32px}
|
| 49 |
+
#main_button{width:100%}
|
| 50 |
+
<style>
|
| 51 |
+
'''
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
#################################################
|
| 55 |
+
#################################################
|
| 56 |
+
global sreg, creg, sizereg, COUNT, creg_maps, sreg_maps, pipe, text_cond
|
| 57 |
+
|
| 58 |
+
sreg = 0
|
| 59 |
+
creg = 0
|
| 60 |
+
sizereg = 0
|
| 61 |
+
COUNT = 0
|
| 62 |
+
reg_sizes = {}
|
| 63 |
+
creg_maps = {}
|
| 64 |
+
sreg_maps = {}
|
| 65 |
+
text_cond = 0
|
| 66 |
+
device="cuda"
|
| 67 |
+
MAX_COLORS = 12
|
| 68 |
+
|
| 69 |
+
pipe = diffusers.StableDiffusionPipeline.from_pretrained(
|
| 70 |
+
"runwayml/stable-diffusion-v1-5",
|
| 71 |
+
variant="fp16").to(device)
|
| 72 |
+
|
| 73 |
+
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
| 74 |
+
pipe.scheduler.set_timesteps(50)
|
| 75 |
+
timesteps = pipe.scheduler.timesteps
|
| 76 |
+
sp_sz = pipe.unet.sample_size
|
| 77 |
+
|
| 78 |
+
with open('./valset.pkl', 'rb') as f:
|
| 79 |
+
val_prompt = pickle.load(f)
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
#################################################
|
| 83 |
+
#################################################
|
| 84 |
+
def mod_forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None):
|
| 85 |
+
|
| 86 |
+
residual = hidden_states
|
| 87 |
+
|
| 88 |
+
if self.spatial_norm is not None:
|
| 89 |
+
hidden_states = self.spatial_norm(hidden_states, temb)
|
| 90 |
+
|
| 91 |
+
input_ndim = hidden_states.ndim
|
| 92 |
+
|
| 93 |
+
if input_ndim == 4:
|
| 94 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 95 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 96 |
+
|
| 97 |
+
batch_size, sequence_length, _ = (hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape)
|
| 98 |
+
attention_mask = self.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 99 |
+
|
| 100 |
+
if self.group_norm is not None:
|
| 101 |
+
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 102 |
+
|
| 103 |
+
query = self.to_q(hidden_states)
|
| 104 |
+
|
| 105 |
+
global sreg, creg, COUNT, creg_maps, sreg_maps, reg_sizes, text_cond
|
| 106 |
+
|
| 107 |
+
sa_ = True if encoder_hidden_states is None else False
|
| 108 |
+
encoder_hidden_states = text_cond if encoder_hidden_states is not None else hidden_states
|
| 109 |
+
|
| 110 |
+
if self.norm_cross:
|
| 111 |
+
encoder_hidden_states = self.norm_encoder_hidden_states(encoder_hidden_states)
|
| 112 |
+
|
| 113 |
+
key = self.to_k(encoder_hidden_states)
|
| 114 |
+
value = self.to_v(encoder_hidden_states)
|
| 115 |
+
|
| 116 |
+
query = self.head_to_batch_dim(query)
|
| 117 |
+
key = self.head_to_batch_dim(key)
|
| 118 |
+
value = self.head_to_batch_dim(value)
|
| 119 |
+
|
| 120 |
+
if COUNT/32 < 50*0.3:
|
| 121 |
+
|
| 122 |
+
dtype = query.dtype
|
| 123 |
+
if self.upcast_attention:
|
| 124 |
+
query = query.float()
|
| 125 |
+
key = key.float()
|
| 126 |
+
|
| 127 |
+
sim = torch.baddbmm(torch.empty(query.shape[0], query.shape[1], key.shape[1],
|
| 128 |
+
dtype=query.dtype, device=query.device),
|
| 129 |
+
query, key.transpose(-1, -2), beta=0, alpha=self.scale)
|
| 130 |
+
|
| 131 |
+
treg = torch.pow(timesteps[COUNT//32]/1000, 5)
|
| 132 |
+
|
| 133 |
+
## reg at self-attn
|
| 134 |
+
if sa_:
|
| 135 |
+
min_value = sim[int(sim.size(0)/2):].min(-1)[0].unsqueeze(-1)
|
| 136 |
+
max_value = sim[int(sim.size(0)/2):].max(-1)[0].unsqueeze(-1)
|
| 137 |
+
mask = sreg_maps[sim.size(1)].repeat(self.heads,1,1)
|
| 138 |
+
size_reg = reg_sizes[sim.size(1)].repeat(self.heads,1,1)
|
| 139 |
+
|
| 140 |
+
sim[int(sim.size(0)/2):] += (mask>0)*size_reg*sreg*treg*(max_value-sim[int(sim.size(0)/2):])
|
| 141 |
+
sim[int(sim.size(0)/2):] -= ~(mask>0)*size_reg*sreg*treg*(sim[int(sim.size(0)/2):]-min_value)
|
| 142 |
+
|
| 143 |
+
## reg at cross-attn
|
| 144 |
+
else:
|
| 145 |
+
min_value = sim[int(sim.size(0)/2):].min(-1)[0].unsqueeze(-1)
|
| 146 |
+
max_value = sim[int(sim.size(0)/2):].max(-1)[0].unsqueeze(-1)
|
| 147 |
+
mask = creg_maps[sim.size(1)].repeat(self.heads,1,1)
|
| 148 |
+
size_reg = reg_sizes[sim.size(1)].repeat(self.heads,1,1)
|
| 149 |
+
|
| 150 |
+
sim[int(sim.size(0)/2):] += (mask>0)*size_reg*creg*treg*(max_value-sim[int(sim.size(0)/2):])
|
| 151 |
+
sim[int(sim.size(0)/2):] -= ~(mask>0)*size_reg*creg*treg*(sim[int(sim.size(0)/2):]-min_value)
|
| 152 |
+
|
| 153 |
+
attention_probs = sim.softmax(dim=-1)
|
| 154 |
+
attention_probs = attention_probs.to(dtype)
|
| 155 |
+
|
| 156 |
+
else:
|
| 157 |
+
attention_probs = self.get_attention_scores(query, key, attention_mask)
|
| 158 |
+
|
| 159 |
+
COUNT += 1
|
| 160 |
+
|
| 161 |
+
hidden_states = torch.bmm(attention_probs, value)
|
| 162 |
+
hidden_states = self.batch_to_head_dim(hidden_states)
|
| 163 |
+
|
| 164 |
+
# linear proj
|
| 165 |
+
hidden_states = self.to_out[0](hidden_states)
|
| 166 |
+
# dropout
|
| 167 |
+
hidden_states = self.to_out[1](hidden_states)
|
| 168 |
+
|
| 169 |
+
if input_ndim == 4:
|
| 170 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 171 |
+
|
| 172 |
+
if self.residual_connection:
|
| 173 |
+
hidden_states = hidden_states + residual
|
| 174 |
+
|
| 175 |
+
hidden_states = hidden_states / self.rescale_output_factor
|
| 176 |
+
|
| 177 |
+
return hidden_states
|
| 178 |
+
|
| 179 |
+
for _module in pipe.unet.modules():
|
| 180 |
+
if _module.__class__.__name__ == "Attention":
|
| 181 |
+
_module.__class__.__call__ = mod_forward
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
#################################################
|
| 185 |
+
#################################################
|
| 186 |
+
def process_generation(binary_matrixes, seed, creg_, sreg_, sizereg_, bsz, master_prompt, *prompts):
|
| 187 |
+
|
| 188 |
+
global creg, sreg, sizereg
|
| 189 |
+
creg, sreg, sizereg = creg_, sreg_, sizereg_
|
| 190 |
+
|
| 191 |
+
clipped_prompts = prompts[:len(binary_matrixes)]
|
| 192 |
+
prompts = [master_prompt] + list(clipped_prompts)
|
| 193 |
+
layouts = torch.cat([preprocess_mask(mask_, sp_sz, sp_sz, device) for mask_ in binary_matrixes])
|
| 194 |
+
|
| 195 |
+
text_input = pipe.tokenizer(prompts, padding="max_length", return_length=True, return_overflowing_tokens=False,
|
| 196 |
+
max_length=pipe.tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
| 197 |
+
cond_embeddings = pipe.text_encoder(text_input.input_ids.to(device))[0]
|
| 198 |
+
|
| 199 |
+
uncond_input = pipe.tokenizer([""]*bsz, padding="max_length", max_length=pipe.tokenizer.model_max_length,
|
| 200 |
+
truncation=True, return_tensors="pt")
|
| 201 |
+
uncond_embeddings = pipe.text_encoder(uncond_input.input_ids.to(device))[0]
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
###########################
|
| 205 |
+
###### prep for sreg ######
|
| 206 |
+
###########################
|
| 207 |
+
global sreg_maps, reg_sizes
|
| 208 |
+
sreg_maps = {}
|
| 209 |
+
reg_sizes = {}
|
| 210 |
+
|
| 211 |
+
for r in range(4):
|
| 212 |
+
res = int(sp_sz/np.power(2,r))
|
| 213 |
+
layouts_s = F.interpolate(layouts,(res, res),mode='nearest')
|
| 214 |
+
layouts_s = (layouts_s.view(layouts_s.size(0),1,-1)*layouts_s.view(layouts_s.size(0),-1,1)).sum(0).unsqueeze(0).repeat(bsz,1,1)
|
| 215 |
+
reg_sizes[np.power(res, 2)] = 1-sizereg*layouts_s.sum(-1, keepdim=True)/(np.power(res, 2))
|
| 216 |
+
sreg_maps[np.power(res, 2)] = layouts_s
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
###########################
|
| 220 |
+
###### prep for creg ######
|
| 221 |
+
###########################
|
| 222 |
+
pww_maps = torch.zeros(1,77,sp_sz,sp_sz).to(device)
|
| 223 |
+
for i in range(1,len(prompts)):
|
| 224 |
+
wlen = text_input['length'][i] - 2
|
| 225 |
+
widx = text_input['input_ids'][i][1:1+wlen]
|
| 226 |
+
for j in range(77):
|
| 227 |
+
try:
|
| 228 |
+
if (text_input['input_ids'][0][j:j+wlen] == widx).sum() == wlen:
|
| 229 |
+
pww_maps[:,j:j+wlen,:,:] = layouts[i-1:i]
|
| 230 |
+
cond_embeddings[0][j:j+wlen] = cond_embeddings[i][1:1+wlen]
|
| 231 |
+
break
|
| 232 |
+
except:
|
| 233 |
+
raise gr.Error("Please check whether every segment prompt is included in the full text !")
|
| 234 |
+
return
|
| 235 |
+
|
| 236 |
+
global creg_maps
|
| 237 |
+
creg_maps = {}
|
| 238 |
+
for r in range(4):
|
| 239 |
+
res = int(sp_sz/np.power(2,r))
|
| 240 |
+
layout_c = F.interpolate(pww_maps,(res,res),mode='nearest').view(1,77,-1).permute(0,2,1).repeat(bsz,1,1)
|
| 241 |
+
creg_maps[np.power(res, 2)] = layout_c
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
###########################
|
| 245 |
+
#### prep for text_emb ####
|
| 246 |
+
###########################
|
| 247 |
+
global text_cond
|
| 248 |
+
text_cond = torch.cat([uncond_embeddings, cond_embeddings[:1].repeat(bsz,1,1)])
|
| 249 |
+
|
| 250 |
+
global COUNT
|
| 251 |
+
COUNT = 0
|
| 252 |
+
|
| 253 |
+
if seed == -1:
|
| 254 |
+
latents = torch.randn(bsz,4,sp_sz,sp_sz).to(device)
|
| 255 |
+
else:
|
| 256 |
+
latents = torch.randn(bsz,4,sp_sz,sp_sz, generator=torch.Generator().manual_seed(seed)).to(device)
|
| 257 |
+
|
| 258 |
+
image = pipe(prompts[:1]*bsz, latents=latents).images
|
| 259 |
+
|
| 260 |
+
return(image)
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
#################################################
|
| 264 |
+
#################################################
|
| 265 |
+
### define the interface
|
| 266 |
+
with gr.Blocks(css=css) as demo:
|
| 267 |
+
binary_matrixes = gr.State([])
|
| 268 |
+
color_layout = gr.State([])
|
| 269 |
+
gr.Markdown('''## DenseDiffusion: Dense Text-to-Image Generation with Attention Modulation''')
|
| 270 |
+
gr.Markdown('''
|
| 271 |
+
#### 😺 Instruction to generate images 😺 <br>
|
| 272 |
+
(1) Create the image layout. <br>
|
| 273 |
+
(2) Label each segment with a text prompt. <br>
|
| 274 |
+
(3) Adjust the full text. The default full text is automatically concatenated from each segment's text. The default one works well, but refineing the full text will further improve the result. <br>
|
| 275 |
+
(4) Check the generated images, and tune the hyperparameters if needed. <br>
|
| 276 |
+
- w<sup>c</sup> : The degree of attention modulation at cross-attention layers. <br>
|
| 277 |
+
- w<sup>s</sup> : The degree of attention modulation at self-attention layers. <br>
|
| 278 |
+
''')
|
| 279 |
+
|
| 280 |
+
with gr.Row():
|
| 281 |
+
with gr.Box(elem_id="main-image"):
|
| 282 |
+
canvas_data = gr.JSON(value={}, visible=False)
|
| 283 |
+
canvas = gr.HTML(canvas_html)
|
| 284 |
+
button_run = gr.Button("(1) I've finished my sketch ! 😺", elem_id="main_button", interactive=True)
|
| 285 |
+
|
| 286 |
+
prompts = []
|
| 287 |
+
colors = []
|
| 288 |
+
color_row = [None] * MAX_COLORS
|
| 289 |
+
with gr.Column(visible=False) as post_sketch:
|
| 290 |
+
for n in range(MAX_COLORS):
|
| 291 |
+
if n == 0 :
|
| 292 |
+
with gr.Row(visible=False) as color_row[n]:
|
| 293 |
+
colors.append(gr.Image(shape=(100, 100), label="background", type="pil", image_mode="RGB", width=100, height=100))
|
| 294 |
+
prompts.append(gr.Textbox(label="Prompt for the background (white region)", value=""))
|
| 295 |
+
else:
|
| 296 |
+
with gr.Row(visible=False) as color_row[n]:
|
| 297 |
+
colors.append(gr.Image(shape=(100, 100), label="segment "+str(n), type="pil", image_mode="RGB", width=100, height=100))
|
| 298 |
+
prompts.append(gr.Textbox(label="Prompt for the segment "+str(n)))
|
| 299 |
+
|
| 300 |
+
get_genprompt_run = gr.Button("(2) I've finished segment labeling ! 😺", elem_id="prompt_button", interactive=True)
|
| 301 |
+
|
| 302 |
+
with gr.Column(visible=False) as gen_prompt_vis:
|
| 303 |
+
general_prompt = gr.Textbox(value='', label="(3) Textual Description for the entire image", interactive=True)
|
| 304 |
+
with gr.Accordion("(4) Tune the hyperparameters", open=False):
|
| 305 |
+
creg_ = gr.Slider(label=" w\u1D9C (The degree of attention modulation at cross-attention layers) ", minimum=0, maximum=2., value=1.0, step=0.1)
|
| 306 |
+
sreg_ = gr.Slider(label=" w \u02E2 (The degree of attention modulation at self-attention layers) ", minimum=0, maximum=2., value=0.3, step=0.1)
|
| 307 |
+
sizereg_ = gr.Slider(label="The degree of mask-area adaptive adjustment", minimum=0, maximum=1., value=1., step=0.1)
|
| 308 |
+
bsz_ = gr.Slider(label="Number of Samples to generate", minimum=1, maximum=4, value=1, step=1)
|
| 309 |
+
seed_ = gr.Slider(label="Seed", minimum=-1, maximum=999999999, value=-1, step=1)
|
| 310 |
+
|
| 311 |
+
final_run_btn = gr.Button("Generate ! 😺")
|
| 312 |
+
|
| 313 |
+
layout_path = gr.Textbox(label="layout_path", visible=False)
|
| 314 |
+
all_prompts = gr.Textbox(label="all_prompts", visible=False)
|
| 315 |
+
|
| 316 |
+
with gr.Column():
|
| 317 |
+
out_image = gr.Gallery(label="Result", columns=2, height='auto')
|
| 318 |
+
|
| 319 |
+
button_run.click(process_sketch, inputs=[canvas_data], outputs=[post_sketch, binary_matrixes, *color_row, *colors], _js=get_js_colors, queue=False)
|
| 320 |
+
|
| 321 |
+
get_genprompt_run.click(process_prompts, inputs=[binary_matrixes, *prompts], outputs=[gen_prompt_vis, general_prompt], queue=False)
|
| 322 |
+
|
| 323 |
+
final_run_btn.click(process_generation, inputs=[binary_matrixes, seed_, creg_, sreg_, sizereg_, bsz_, general_prompt, *prompts], outputs=out_image)
|
| 324 |
+
|
| 325 |
+
gr.Examples(
|
| 326 |
+
examples=[['0.png', '***'.join([val_prompt[0]['textual_condition']] + val_prompt[0]['segment_descriptions']), 381940206],
|
| 327 |
+
['1.png', '***'.join([val_prompt[1]['textual_condition']] + val_prompt[1]['segment_descriptions']), 307504592],
|
| 328 |
+
['5.png', '***'.join([val_prompt[5]['textual_condition']] + val_prompt[5]['segment_descriptions']), 114972190]],
|
| 329 |
+
inputs=[layout_path, all_prompts, seed_],
|
| 330 |
+
outputs=[post_sketch, binary_matrixes, *color_row, *colors, *prompts, gen_prompt_vis, general_prompt, seed_],
|
| 331 |
+
fn=process_example,
|
| 332 |
+
run_on_click=True,
|
| 333 |
+
label='😺 Examples 😺',
|
| 334 |
+
)
|
| 335 |
+
|
| 336 |
+
demo.load(None, None, None, _js=load_js)
|
| 337 |
+
|
| 338 |
+
demo.launch(debug=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
diffusers==0.20.2
|
| 2 |
+
transformers==4.28.0
|
| 3 |
+
accelerate
|
utils.py
ADDED
|
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import base64
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import numpy as np
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from io import BytesIO
|
| 7 |
+
|
| 8 |
+
MAX_COLORS = 12
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def create_binary_matrix(img_arr, target_color):
|
| 12 |
+
mask = np.all(img_arr == target_color, axis=-1)
|
| 13 |
+
binary_matrix = mask.astype(int)
|
| 14 |
+
return binary_matrix
|
| 15 |
+
|
| 16 |
+
def preprocess_mask(mask_, h, w, device):
|
| 17 |
+
mask = np.array(mask_)
|
| 18 |
+
mask = mask.astype(np.float32)
|
| 19 |
+
mask = mask[None, None]
|
| 20 |
+
mask[mask < 0.5] = 0
|
| 21 |
+
mask[mask >= 0.5] = 1
|
| 22 |
+
mask = torch.from_numpy(mask).to(device)
|
| 23 |
+
mask = torch.nn.functional.interpolate(mask, size=(h, w), mode='nearest')
|
| 24 |
+
return mask
|
| 25 |
+
|
| 26 |
+
def process_sketch(canvas_data):
|
| 27 |
+
binary_matrixes = []
|
| 28 |
+
base64_img = canvas_data['image']
|
| 29 |
+
image_data = base64.b64decode(base64_img.split(',')[1])
|
| 30 |
+
image = Image.open(BytesIO(image_data)).convert("RGB")
|
| 31 |
+
im2arr = np.array(image)
|
| 32 |
+
colors = [tuple(map(int, rgb[4:-1].split(','))) for rgb in canvas_data['colors']]
|
| 33 |
+
colors_fixed = []
|
| 34 |
+
|
| 35 |
+
r, g, b = 255, 255, 255
|
| 36 |
+
binary_matrix = create_binary_matrix(im2arr, (r,g,b))
|
| 37 |
+
binary_matrixes.append(binary_matrix)
|
| 38 |
+
binary_matrix_ = np.repeat(np.expand_dims(binary_matrix, axis=(-1)), 3, axis=(-1))
|
| 39 |
+
colored_map = binary_matrix_*(r,g,b) + (1-binary_matrix_)*(50,50,50)
|
| 40 |
+
colors_fixed.append(gr.update(value=colored_map.astype(np.uint8)))
|
| 41 |
+
|
| 42 |
+
for color in colors:
|
| 43 |
+
r, g, b = color
|
| 44 |
+
if any(c != 255 for c in (r, g, b)):
|
| 45 |
+
binary_matrix = create_binary_matrix(im2arr, (r,g,b))
|
| 46 |
+
binary_matrixes.append(binary_matrix)
|
| 47 |
+
binary_matrix_ = np.repeat(np.expand_dims(binary_matrix, axis=(-1)), 3, axis=(-1))
|
| 48 |
+
colored_map = binary_matrix_*(r,g,b) + (1-binary_matrix_)*(50,50,50)
|
| 49 |
+
colors_fixed.append(gr.update(value=colored_map.astype(np.uint8)))
|
| 50 |
+
|
| 51 |
+
visibilities = []
|
| 52 |
+
colors = []
|
| 53 |
+
for n in range(MAX_COLORS):
|
| 54 |
+
visibilities.append(gr.update(visible=False))
|
| 55 |
+
colors.append(gr.update())
|
| 56 |
+
for n in range(len(colors_fixed)):
|
| 57 |
+
visibilities[n] = gr.update(visible=True)
|
| 58 |
+
colors[n] = colors_fixed[n]
|
| 59 |
+
|
| 60 |
+
return [gr.update(visible=True), binary_matrixes, *visibilities, *colors]
|
| 61 |
+
|
| 62 |
+
def process_prompts(binary_matrixes, *seg_prompts):
|
| 63 |
+
return [gr.update(visible=True), gr.update(value=' , '.join(seg_prompts[:len(binary_matrixes)]))]
|
| 64 |
+
|
| 65 |
+
def process_example(layout_path, all_prompts, seed_):
|
| 66 |
+
|
| 67 |
+
all_prompts = all_prompts.split('***')
|
| 68 |
+
|
| 69 |
+
binary_matrixes = []
|
| 70 |
+
colors_fixed = []
|
| 71 |
+
|
| 72 |
+
im2arr = np.array(Image.open(layout_path))[:,:,:3]
|
| 73 |
+
unique, counts = np.unique(np.reshape(im2arr,(-1,3)), axis=0, return_counts=True)
|
| 74 |
+
sorted_idx = np.argsort(-counts)
|
| 75 |
+
|
| 76 |
+
binary_matrix = create_binary_matrix(im2arr, (0,0,0))
|
| 77 |
+
binary_matrixes.append(binary_matrix)
|
| 78 |
+
binary_matrix_ = np.repeat(np.expand_dims(binary_matrix, axis=(-1)), 3, axis=(-1))
|
| 79 |
+
colored_map = binary_matrix_*(255,255,255) + (1-binary_matrix_)*(50,50,50)
|
| 80 |
+
colors_fixed.append(gr.update(value=colored_map.astype(np.uint8)))
|
| 81 |
+
|
| 82 |
+
for i in range(len(all_prompts)-1):
|
| 83 |
+
r, g, b = unique[sorted_idx[i]]
|
| 84 |
+
if any(c != 255 for c in (r, g, b)) and any(c != 0 for c in (r, g, b)):
|
| 85 |
+
binary_matrix = create_binary_matrix(im2arr, (r,g,b))
|
| 86 |
+
binary_matrixes.append(binary_matrix)
|
| 87 |
+
binary_matrix_ = np.repeat(np.expand_dims(binary_matrix, axis=(-1)), 3, axis=(-1))
|
| 88 |
+
colored_map = binary_matrix_*(r,g,b) + (1-binary_matrix_)*(50,50,50)
|
| 89 |
+
colors_fixed.append(gr.update(value=colored_map.astype(np.uint8)))
|
| 90 |
+
|
| 91 |
+
visibilities = []
|
| 92 |
+
colors = []
|
| 93 |
+
prompts = []
|
| 94 |
+
for n in range(MAX_COLORS):
|
| 95 |
+
visibilities.append(gr.update(visible=False))
|
| 96 |
+
colors.append(gr.update())
|
| 97 |
+
prompts.append(gr.update())
|
| 98 |
+
|
| 99 |
+
for n in range(len(colors_fixed)):
|
| 100 |
+
visibilities[n] = gr.update(visible=True)
|
| 101 |
+
colors[n] = colors_fixed[n]
|
| 102 |
+
prompts[n] = all_prompts[n+1]
|
| 103 |
+
|
| 104 |
+
return [gr.update(visible=True), binary_matrixes, *visibilities, *colors, *prompts,
|
| 105 |
+
gr.update(visible=True), gr.update(value=all_prompts[0]), int(seed_)]
|
valset.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bbe1fe2b895eb122f9ef33d550ee6a29a8f1a5c1ed31594efc4779edf308b58e
|
| 3 |
+
size 3249
|