C2C_demo / app.py
fuvty's picture
update example
54e9efe
"""
Gradio Side-by-Side Model Comparison Demo
This creates a web interface to compare three inference modes simultaneously:
1. Single: Regular HuggingFace model
2. T2T: Two-stage inference (shows context + answer)
3. C2C: Rosetta model with projectors
ZeroGPU Support:
- Models are loaded to CUDA if available
- @spaces.GPU decorator handles device allocation automatically
- Inputs are moved to match the model's actual device
- Works seamlessly on both ZeroGPU and regular GPU environments
"""
import os
import sys
import torch
import argparse
import gradio as gr
from pathlib import Path
from typing import Optional, Generator
from queue import Queue
from threading import Thread
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
import spaces
ZEROGPU_AVAILABLE = os.getenv("ZERO_GPU", "").lower() == "true" # ZeroGPU support - HuggingFace Spaces sets ZERO_GPU=true when ZeroGPU is available
from rosetta.utils.evaluate import load_rosetta_model, load_hf_model, set_default_chat_template
from rosetta.model.wrapper import RosettaModel
from rosetta.baseline.multi_stage import TwoStageInference
class ModelManager:
"""Manages loading and inference for all three model types."""
def __init__(
self,
single_model_name: str = "Qwen/Qwen3-0.6B",
t2t_context_model: str = "Qwen/Qwen2.5-0.5B-Instruct",
t2t_answer_model: str = "Qwen/Qwen3-0.6B",
c2c_checkpoint_path: str = "local/checkpoints/qwen3_0.6b+qwen2.5_0.5b_Fuser",
device: str = "auto"
):
"""
Initialize ModelManager with model configurations.
Args:
single_model_name: HuggingFace model name for single mode
t2t_context_model: Context model for T2T mode
t2t_answer_model: Answer model for T2T mode
c2c_checkpoint_path: Path to C2C checkpoint directory
device: Device to use (cuda, cpu, or auto)
"""
# Always use CUDA if available, ZeroGPU handles the rest
if device == "auto":
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
else:
self.device = torch.device(device)
print(f"Using device: {self.device}")
if ZEROGPU_AVAILABLE:
print("ZeroGPU environment detected")
# Model configurations
self.single_model_name = single_model_name
self.t2t_context_model = t2t_context_model
self.t2t_answer_model = t2t_answer_model
self.c2c_checkpoint_path = c2c_checkpoint_path
# T2T prompt configurations
self.t2t_background_prompt = "In one clear sentence, describe the most essential background knowledge needed to answer the question:\n\n{question}\n\nDo NOT directly solve or give answer to the question."
self.t2t_answer_prompt = "Based on the background, accurately answer the question:\n\n{question}" # Format for second round question
self.t2t_context_max_tokens = 256
self.t2t_answer_max_tokens = 512
# Generation configuration (shared across all models)
# To enable sampling: set use_sampling=True and adjust temperature/top_p/top_k
# Current mode: Greedy decoding (do_sample=False)
self.use_sampling = False # Set to True to enable sampling
self.temperature = 0.7 # Used when use_sampling=True
self.top_p = 0.8 # Used when use_sampling=True
self.top_k = 20 # Used when use_sampling=True
# Initialize models
self.single_model = None
self.single_tokenizer = None
self.t2t_model = None
self.c2c_model = None
self.c2c_tokenizer = None
# C2C model names (will be loaded from config)
self.c2c_base_model = None
self.c2c_teacher_model = None
print("=" * 60)
print("Initializing models... This may take a few minutes.")
print("=" * 60)
self._load_all_models()
def _load_single_model(self):
"""Load single HuggingFace model."""
print(f"\n[Single] Loading {self.single_model_name}...")
self.single_model, self.single_tokenizer = load_hf_model(
self.single_model_name, self.device
)
set_default_chat_template(self.single_tokenizer, self.single_model_name)
print("[Single] βœ“ Model loaded")
def _load_t2t_model(self):
"""Load two-stage model."""
print(f"\n[T2T] Loading two-stage model...")
print(f" Context: {self.t2t_context_model}")
print(f" Answer: {self.t2t_answer_model}")
print(f" Background prompt: {self.t2t_background_prompt}")
print(f" Answer prompt: {self.t2t_answer_prompt}")
self.t2t_model = TwoStageInference(
context_model_path=self.t2t_context_model,
answer_model_path=self.t2t_answer_model,
device=str(self.device),
background_prompt=self.t2t_background_prompt
)
print("[T2T] βœ“ Model loaded")
def _load_c2c_model(self):
"""Load Rosetta (C2C) model."""
print(f"\n[C2C] Loading from {self.c2c_checkpoint_path}...")
# Auto-download if checkpoint doesn't exist
if not Path(self.c2c_checkpoint_path).exists():
print("[C2C] Downloading checkpoint from HuggingFace (may take a few minutes)...")
try:
from huggingface_hub import snapshot_download
checkpoint_name = Path(self.c2c_checkpoint_path).name
snapshot_download(
repo_id='nics-efc/C2C_Fuser',
allow_patterns=[f'{checkpoint_name}/*'],
local_dir=str(Path(self.c2c_checkpoint_path).parent)
)
print("[C2C] βœ“ Download complete")
except ImportError:
raise ImportError("Install huggingface_hub: pip install huggingface_hub")
except Exception as e:
raise RuntimeError(f"Download failed: {e}\nManual download: https://huggingface.co/nics-efc/C2C_Fuser")
# Load config
import yaml
config_path = Path(self.c2c_checkpoint_path) / "config.json"
if not config_path.exists():
raise FileNotFoundError(f"Config file not found: {config_path}")
with open(config_path, "r") as f:
config = yaml.safe_load(f)
# Store model names from config
self.c2c_base_model = config["model"]["base_model"]
self.c2c_teacher_model = config["model"]["teacher_model"]
# Load Rosetta model
subfolder_dir = Path(self.c2c_checkpoint_path) / "final"
if not subfolder_dir.exists():
raise FileNotFoundError(f"Final checkpoint directory not found: {subfolder_dir}")
model_config = {
"model_name": "Rosetta",
"rosetta_config": {
"checkpoints_dir": str(subfolder_dir),
"base_model": self.c2c_base_model,
"teacher_model": self.c2c_teacher_model,
"is_do_alignment": config["model"].get("is_do_alignment", False),
"alignment_strategy": config["model"].get("alignment_strategy", "first")
}
}
eval_config = {"checkpoints_dir": str(subfolder_dir)}
self.c2c_model, self.c2c_tokenizer = load_rosetta_model(
model_config, eval_config, self.device
)
print("[C2C] βœ“ Model loaded")
def _load_all_models(self):
"""Load all models sequentially."""
try:
self._load_single_model()
self._load_t2t_model()
self._load_c2c_model()
print("\n" + "=" * 60)
print("βœ“ All models loaded successfully!")
print("=" * 60 + "\n")
except Exception as e:
print(f"\nβœ— Error loading models: {e}")
raise
def _get_generation_kwargs(self, max_new_tokens: int) -> dict:
"""
Get generation kwargs with consistent settings across all models.
Args:
max_new_tokens: Maximum number of new tokens to generate
Returns:
Dictionary of generation parameters
"""
kwargs = {
'max_new_tokens': max_new_tokens,
'do_sample': self.use_sampling
}
if self.use_sampling:
kwargs.update({
'temperature': self.temperature,
'top_p': self.top_p,
'top_k': self.top_k
})
return kwargs
@spaces.GPU(duration=30)
def generate_single(self, user_input: str) -> Generator[str, None, None]:
"""Generate response from single model with streaming."""
messages = [{"role": "system", "content": ""}, {"role": "user", "content": user_input}]
text = self.single_tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True, enable_thinking=False
)
# Use the model's actual device (ZeroGPU handles device placement)
inputs = self.single_tokenizer(text, return_tensors="pt").to(self.single_model.device)
# Setup streamer
streamer = TextIteratorStreamer(
self.single_tokenizer,
skip_prompt=True,
skip_special_tokens=True
)
# Generation parameters
generation_kwargs = {
'input_ids': inputs.input_ids,
'attention_mask': inputs.attention_mask,
'streamer': streamer,
**self._get_generation_kwargs(max_new_tokens=2048)
}
# Run generation in separate thread
thread = Thread(target=self.single_model.generate, kwargs=generation_kwargs)
thread.start()
# Stream tokens
generated_text = ""
for token in streamer:
generated_text += token
yield generated_text
@spaces.GPU(duration=90)
def generate_t2t(self, user_input: str) -> Generator[tuple[str, str], None, None]:
"""Generate response from T2T model with streaming (returns context, answer)."""
# Stage 1: Context generation
context_streamer = TextIteratorStreamer(
self.t2t_model.context_tokenizer,
skip_prompt=True,
skip_special_tokens=True
)
prompt = self.t2t_background_prompt.format(question=user_input)
inputs = self.t2t_model.context_tokenizer.apply_chat_template(
[{"role": "user", "content": prompt}],
tokenize=True,
add_generation_prompt=True,
return_tensors="pt",
enable_thinking=False
).to(self.t2t_model.context_model.device)
generation_kwargs = {
'input_ids': inputs,
'streamer': context_streamer,
**self._get_generation_kwargs(max_new_tokens=self.t2t_context_max_tokens)
}
# Generate context in thread
thread = Thread(target=self.t2t_model.context_model.generate, kwargs=generation_kwargs)
thread.start()
# Stream context tokens
context_text = ""
for token in context_streamer:
context_text += token
yield context_text, ""
thread.join()
# Decode full context
with torch.inference_mode():
outputs = self.t2t_model.context_model.generate(
inputs, **self._get_generation_kwargs(max_new_tokens=self.t2t_context_max_tokens)
)
context = self.t2t_model.context_tokenizer.batch_decode(
outputs[:, inputs.shape[-1]:], skip_special_tokens=True
)[0]
# Stage 2: Answer generation
answer_streamer = TextIteratorStreamer(
self.t2t_model.answer_tokenizer,
skip_prompt=True,
skip_special_tokens=True
)
# Format the second round question
answer_question = self.t2t_answer_prompt.format(question=user_input)
inputs = self.t2t_model.answer_tokenizer.apply_chat_template(
[
{"role": "user", "content": prompt},
{"role": "assistant", "content": context},
{"role": "user", "content": answer_question}
],
tokenize=True,
add_generation_prompt=True,
return_tensors="pt",
enable_thinking=False
).to(self.t2t_model.answer_model.device)
generation_kwargs = {
'input_ids': inputs,
'streamer': answer_streamer,
**self._get_generation_kwargs(max_new_tokens=self.t2t_answer_max_tokens)
}
# Generate answer in thread
thread = Thread(target=self.t2t_model.answer_model.generate, kwargs=generation_kwargs)
thread.start()
# Stream answer tokens
answer_text = ""
for token in answer_streamer:
answer_text += token
yield context_text, answer_text
@spaces.GPU(duration=30)
def generate_c2c(self, user_input: str) -> Generator[str, None, None]:
"""Generate response from C2C model with streaming."""
messages = [{"role": "system", "content": ""}, {"role": "user", "content": user_input}]
text = self.c2c_tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True, enable_thinking=False
)
# Use the model's actual device (ZeroGPU handles device placement)
inputs = self.c2c_tokenizer(text, return_tensors="pt").to(self.c2c_model.device)
# Setup streamer
streamer = TextIteratorStreamer(
self.c2c_tokenizer,
skip_prompt=True,
skip_special_tokens=True
)
# Prepare C2C-specific inputs
full_length = inputs.input_ids.shape[1]
instruction_index = torch.tensor([1, 0], dtype=torch.long).repeat(
full_length - 1, 1
).unsqueeze(0).to(self.c2c_model.device)
label_index = torch.tensor([-1, 0], dtype=torch.long).repeat(
1, 1
).unsqueeze(0).to(self.c2c_model.device)
position_ids = inputs.attention_mask.long().cumsum(-1) - 1 if inputs.attention_mask is not None else \
torch.arange(full_length, dtype=torch.long).unsqueeze(0).to(self.c2c_model.device)
# Generation parameters
generation_kwargs = {
'kv_cache_index': [instruction_index, label_index],
'input_ids': inputs.input_ids,
'attention_mask': inputs.attention_mask,
'position_ids': position_ids,
'streamer': streamer,
**self._get_generation_kwargs(max_new_tokens=self.t2t_answer_max_tokens)
}
# Run generation in separate thread
thread = Thread(target=self.c2c_model.generate, kwargs=generation_kwargs)
thread.start()
# Stream tokens
generated_text = ""
for token in streamer:
generated_text += token
yield generated_text
def create_demo(model_manager: ModelManager):
"""Create Gradio interface."""
# Preset example questions
EXAMPLE_QUESTIONS = {
"example1": """Why is the Mars Exploration Rover Spirit currently tilted towards the north?
A. Because it’s climbing up a big hill.
B. Because it’s in the southern hemisphere where it is winter now.
C. Because it’s in the northern hemisphere where it is winter now.
D. Because one of its wheels broke.""",
"example2": """In an experiment, you have two saltwater samples. The first is 500g at 20% concentration, and the second is 300g at 10% concentration. If you mix them together, what will be the mass percent of salt in the final solution? (Give your answer to one decimal place)."""
}
def respond(user_input: str):
"""Main response function that yields updates for all three models."""
if not user_input.strip():
yield "", "", "", ""
# Generators for each model
single_gen = model_manager.generate_single(user_input)
t2t_gen = model_manager.generate_t2t(user_input)
c2c_gen = model_manager.generate_c2c(user_input)
single_done = False
t2t_done = False
c2c_done = False
single_text = ""
t2t_context = ""
t2t_answer = ""
c2c_text = ""
# Stream from all three models
while not (single_done and t2t_done and c2c_done):
# Update single
if not single_done:
try:
single_text = next(single_gen)
except StopIteration:
single_done = True
# Update T2T
if not t2t_done:
try:
t2t_context, t2t_answer = next(t2t_gen)
except StopIteration:
t2t_done = True
# Update C2C
if not c2c_done:
try:
c2c_text = next(c2c_gen)
except StopIteration:
c2c_done = True
# Yield current state
yield single_text, t2t_context, t2t_answer, c2c_text
# Create Gradio interface
with gr.Blocks(title="C2C Demo", theme=gr.themes.Base()) as demo:
# Header with logo
with gr.Row():
with gr.Column(scale=1, min_width=100):
gr.Image("https://raw.githubusercontent.com/thu-nics/C2C/main/resource/logo.png", show_label=False, show_download_button=False, container=False, height=80)
with gr.Column(scale=5):
gr.Markdown("# Cache-to-Cache Communication Demo")
gr.Markdown("Compare three inference modes side-by-side: **Single** | **Text-to-Text Communication** | **Cache-to-Cache Communication**")
gr.Markdown("---")
# Input section
gr.Markdown("## Question")
# Preset question examples
gr.Markdown("Example Questions:")
with gr.Row():
example1_btn = gr.Button("πŸ“ Example 1: Astronomy", size="sm")
example2_btn = gr.Button("πŸ“ Example 2: Simple Math", size="sm")
with gr.Row():
user_input = gr.Textbox(
label="",
placeholder="Type your question here...",
lines=2,
scale=4,
show_label=False
)
with gr.Row():
submit_btn = gr.Button("πŸš€ Submit", variant="primary", scale=1)
clear_btn = gr.Button("πŸ—‘οΈ Clear", scale=1)
gr.Markdown("---")
# Output section - three columns
gr.Markdown("## Responses")
with gr.Row():
# Single column
with gr.Column():
gr.Markdown("### Single Model")
gr.Markdown(f"*{model_manager.single_model_name}*")
single_output = gr.Textbox(
label="",
lines=18,
max_lines=30,
interactive=False,
show_label=False
)
# T2T column (with two sub-boxes)
with gr.Column():
gr.Markdown("### Text-to-Text Communication")
gr.Markdown(f"*{model_manager.t2t_context_model} β†’ {model_manager.t2t_answer_model}*")
t2t_context_output = gr.Textbox(
label="πŸ“ Context",
lines=6,
max_lines=12,
interactive=False
)
t2t_answer_output = gr.Textbox(
label="πŸ’¬ Answer",
lines=7,
max_lines=14,
interactive=False
)
# C2C column
with gr.Column():
gr.Markdown("### Cache-to-Cache Communication")
gr.Markdown(f"*{model_manager.c2c_teacher_model} β†’ {model_manager.c2c_base_model}*")
c2c_output = gr.Textbox(
label="",
lines=18,
max_lines=30,
interactive=False,
show_label=False
)
# Event handlers
submit_btn.click(
fn=respond,
inputs=[user_input],
outputs=[single_output, t2t_context_output, t2t_answer_output, c2c_output]
)
user_input.submit(
fn=respond,
inputs=[user_input],
outputs=[single_output, t2t_context_output, t2t_answer_output, c2c_output]
)
clear_btn.click(
fn=lambda: ("", "", "", "", ""),
inputs=None,
outputs=[user_input, single_output, t2t_context_output, t2t_answer_output, c2c_output]
)
# Example question handlers
example1_btn.click(
fn=lambda: EXAMPLE_QUESTIONS["example1"],
inputs=None,
outputs=[user_input]
)
example2_btn.click(
fn=lambda: EXAMPLE_QUESTIONS["example2"],
inputs=None,
outputs=[user_input]
)
# Disclaimer notice
gr.Markdown("---")
gr.Markdown("""
### ⚠️ Disclaimer
This demo is provided for **research purposes only** on an **"AS-IS" basis without warranties of any kind**.
- C2C models are trained only on English corpus and are in early experimental stages.
- Models may generate harmful, biased, or inaccurate content.
- Generated outputs do not represent the views or opinions of the creators.
- **Users are solely responsible** for any use of generated content and use this demo at their own risk.
- We assume **no liability** for any damages, losses, or consequences arising from the use of this demo or its outputs.
---
C2C is not perfect and is in its early stages, representing a new communication paradigm.
**We welcome the community to explore the possibilities of C2C with us!** πŸš€
""")
return demo
def main():
"""Main entry point."""
print("=" * 60)
print("Model Comparison Demo - Gradio Interface")
print("=" * 60)
# Initialize models
# C2C-S: qwen3_0.6b+qwen2.5_0.5b_Fuser
# context_model_name = "Qwen/Qwen2.5-0.5B-Instruct"
# c2c_checkpoint_path = "local/checkpoints/qwen3_0.6b+qwen2.5_0.5b_Fuser"
# C2C-L: qwen3_0.6b+qwen2.5_0.5b_Fuser_large
context_model_name = "Qwen/Qwen3-4B-Base"
c2c_checkpoint_path = "local/checkpoints/qwen3_0.6b+qwen3_4b_base_Fuser"
answer_model_name = "Qwen/Qwen3-0.6B"
model_manager = ModelManager(
single_model_name=answer_model_name,
t2t_context_model=context_model_name,
t2t_answer_model=answer_model_name,
c2c_checkpoint_path=c2c_checkpoint_path
)
# Create and launch demo
demo = create_demo(model_manager)
print("\n" + "=" * 60)
print("πŸš€ Launching Gradio interface...")
print("=" * 60)
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
)
if __name__ == "__main__":
main()