Spaces:
Starting
on
L4
Starting
on
L4
[debug] zeroGPU
Browse files
app.py
CHANGED
|
@@ -7,8 +7,8 @@ This creates a web interface to compare three inference modes simultaneously:
|
|
| 7 |
3. C2C: Rosetta model with projectors
|
| 8 |
|
| 9 |
ZeroGPU Support:
|
| 10 |
-
- Models are loaded to
|
| 11 |
-
- @spaces.GPU decorator
|
| 12 |
- Works seamlessly on both ZeroGPU and regular GPU environments
|
| 13 |
"""
|
| 14 |
|
|
@@ -51,15 +51,16 @@ class ModelManager:
|
|
| 51 |
c2c_checkpoint_path: Path to C2C checkpoint directory
|
| 52 |
device: Device to use (cuda, cpu, or auto)
|
| 53 |
"""
|
| 54 |
-
# For ZeroGPU, models
|
| 55 |
-
# The @spaces.GPU decorator handles GPU allocation automatically
|
| 56 |
if device == "auto":
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
else:
|
| 59 |
self.device = torch.device(device)
|
| 60 |
print(f"Using device: {self.device}")
|
| 61 |
-
if ZEROGPU_AVAILABLE:
|
| 62 |
-
print("ZeroGPU detected: Models will be loaded to CUDA (decorator handles allocation)")
|
| 63 |
|
| 64 |
# Model configurations
|
| 65 |
self.single_model_name = single_model_name
|
|
@@ -70,8 +71,8 @@ class ModelManager:
|
|
| 70 |
# T2T prompt configurations
|
| 71 |
self.t2t_background_prompt = "Briefly describe the most useful background to answer the question:\n\n{question}"
|
| 72 |
self.t2t_answer_prompt = "Based on the background, answer the question:\n\n{question}" # Format for second round question
|
| 73 |
-
self.t2t_context_max_tokens =
|
| 74 |
-
self.t2t_answer_max_tokens =
|
| 75 |
|
| 76 |
# Generation configuration (shared across all models)
|
| 77 |
# To enable sampling: set use_sampling=True and adjust temperature/top_p/top_k
|
|
@@ -220,12 +221,16 @@ class ModelManager:
|
|
| 220 |
@spaces.GPU(duration=60)
|
| 221 |
def generate_single(self, user_input: str) -> Generator[str, None, None]:
|
| 222 |
"""Generate response from single model with streaming."""
|
| 223 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
messages = [{"role": "system", "content": ""}, {"role": "user", "content": user_input}]
|
| 225 |
text = self.single_tokenizer.apply_chat_template(
|
| 226 |
messages, tokenize=False, add_generation_prompt=True, enable_thinking=False
|
| 227 |
)
|
| 228 |
-
inputs = self.single_tokenizer(text, return_tensors="pt").to(
|
| 229 |
|
| 230 |
# Setup streamer
|
| 231 |
streamer = TextIteratorStreamer(
|
|
@@ -255,7 +260,14 @@ class ModelManager:
|
|
| 255 |
@spaces.GPU(duration=90)
|
| 256 |
def generate_t2t(self, user_input: str) -> Generator[tuple[str, str], None, None]:
|
| 257 |
"""Generate response from T2T model with streaming (returns context, answer)."""
|
| 258 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
|
| 260 |
# Stage 1: Context generation
|
| 261 |
context_streamer = TextIteratorStreamer(
|
|
@@ -271,7 +283,7 @@ class ModelManager:
|
|
| 271 |
add_generation_prompt=True,
|
| 272 |
return_tensors="pt",
|
| 273 |
enable_thinking=False
|
| 274 |
-
).to(
|
| 275 |
|
| 276 |
generation_kwargs = {
|
| 277 |
'input_ids': inputs,
|
|
@@ -320,7 +332,7 @@ class ModelManager:
|
|
| 320 |
add_generation_prompt=True,
|
| 321 |
return_tensors="pt",
|
| 322 |
enable_thinking=False
|
| 323 |
-
).to(
|
| 324 |
|
| 325 |
generation_kwargs = {
|
| 326 |
'input_ids': inputs,
|
|
@@ -341,12 +353,16 @@ class ModelManager:
|
|
| 341 |
@spaces.GPU(duration=60)
|
| 342 |
def generate_c2c(self, user_input: str) -> Generator[str, None, None]:
|
| 343 |
"""Generate response from C2C model with streaming."""
|
| 344 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 345 |
messages = [{"role": "system", "content": ""}, {"role": "user", "content": user_input}]
|
| 346 |
text = self.c2c_tokenizer.apply_chat_template(
|
| 347 |
messages, tokenize=False, add_generation_prompt=True, enable_thinking=False
|
| 348 |
)
|
| 349 |
-
inputs = self.c2c_tokenizer(text, return_tensors="pt").to(
|
| 350 |
|
| 351 |
# Setup streamer
|
| 352 |
streamer = TextIteratorStreamer(
|
|
@@ -359,12 +375,12 @@ class ModelManager:
|
|
| 359 |
full_length = inputs.input_ids.shape[1]
|
| 360 |
instruction_index = torch.tensor([1, 0], dtype=torch.long).repeat(
|
| 361 |
full_length - 1, 1
|
| 362 |
-
).unsqueeze(0).to(
|
| 363 |
label_index = torch.tensor([-1, 0], dtype=torch.long).repeat(
|
| 364 |
1, 1
|
| 365 |
-
).unsqueeze(0).to(
|
| 366 |
position_ids = inputs.attention_mask.long().cumsum(-1) - 1 if inputs.attention_mask is not None else \
|
| 367 |
-
torch.arange(full_length, dtype=torch.long).unsqueeze(0).to(
|
| 368 |
|
| 369 |
# Generation parameters
|
| 370 |
generation_kwargs = {
|
|
|
|
| 7 |
3. C2C: Rosetta model with projectors
|
| 8 |
|
| 9 |
ZeroGPU Support:
|
| 10 |
+
- Models are loaded to CPU at startup
|
| 11 |
+
- @spaces.GPU decorator moves models to GPU on-demand for each inference
|
| 12 |
- Works seamlessly on both ZeroGPU and regular GPU environments
|
| 13 |
"""
|
| 14 |
|
|
|
|
| 51 |
c2c_checkpoint_path: Path to C2C checkpoint directory
|
| 52 |
device: Device to use (cuda, cpu, or auto)
|
| 53 |
"""
|
| 54 |
+
# For ZeroGPU, load models to CPU and move to GPU in decorated functions
|
|
|
|
| 55 |
if device == "auto":
|
| 56 |
+
if ZEROGPU_AVAILABLE:
|
| 57 |
+
self.device = torch.device("cpu")
|
| 58 |
+
print("ZeroGPU detected: Loading models to CPU (will move to GPU on-demand)")
|
| 59 |
+
else:
|
| 60 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 61 |
else:
|
| 62 |
self.device = torch.device(device)
|
| 63 |
print(f"Using device: {self.device}")
|
|
|
|
|
|
|
| 64 |
|
| 65 |
# Model configurations
|
| 66 |
self.single_model_name = single_model_name
|
|
|
|
| 71 |
# T2T prompt configurations
|
| 72 |
self.t2t_background_prompt = "Briefly describe the most useful background to answer the question:\n\n{question}"
|
| 73 |
self.t2t_answer_prompt = "Based on the background, answer the question:\n\n{question}" # Format for second round question
|
| 74 |
+
self.t2t_context_max_tokens = 256
|
| 75 |
+
self.t2t_answer_max_tokens = 256
|
| 76 |
|
| 77 |
# Generation configuration (shared across all models)
|
| 78 |
# To enable sampling: set use_sampling=True and adjust temperature/top_p/top_k
|
|
|
|
| 221 |
@spaces.GPU(duration=60)
|
| 222 |
def generate_single(self, user_input: str) -> Generator[str, None, None]:
|
| 223 |
"""Generate response from single model with streaming."""
|
| 224 |
+
# Move model to GPU for ZeroGPU
|
| 225 |
+
device = torch.device("cuda" if torch.cuda.is_available() else self.device)
|
| 226 |
+
if ZEROGPU_AVAILABLE and self.single_model.device.type != "cuda":
|
| 227 |
+
self.single_model.to(device)
|
| 228 |
+
|
| 229 |
messages = [{"role": "system", "content": ""}, {"role": "user", "content": user_input}]
|
| 230 |
text = self.single_tokenizer.apply_chat_template(
|
| 231 |
messages, tokenize=False, add_generation_prompt=True, enable_thinking=False
|
| 232 |
)
|
| 233 |
+
inputs = self.single_tokenizer(text, return_tensors="pt").to(device)
|
| 234 |
|
| 235 |
# Setup streamer
|
| 236 |
streamer = TextIteratorStreamer(
|
|
|
|
| 260 |
@spaces.GPU(duration=90)
|
| 261 |
def generate_t2t(self, user_input: str) -> Generator[tuple[str, str], None, None]:
|
| 262 |
"""Generate response from T2T model with streaming (returns context, answer)."""
|
| 263 |
+
# Move models to GPU for ZeroGPU
|
| 264 |
+
device = torch.device("cuda" if torch.cuda.is_available() else self.device)
|
| 265 |
+
if ZEROGPU_AVAILABLE:
|
| 266 |
+
if self.t2t_model.context_model.device.type != "cuda":
|
| 267 |
+
self.t2t_model.context_model.to(device)
|
| 268 |
+
if self.t2t_model.answer_model.device.type != "cuda":
|
| 269 |
+
self.t2t_model.answer_model.to(device)
|
| 270 |
+
|
| 271 |
|
| 272 |
# Stage 1: Context generation
|
| 273 |
context_streamer = TextIteratorStreamer(
|
|
|
|
| 283 |
add_generation_prompt=True,
|
| 284 |
return_tensors="pt",
|
| 285 |
enable_thinking=False
|
| 286 |
+
).to(device)
|
| 287 |
|
| 288 |
generation_kwargs = {
|
| 289 |
'input_ids': inputs,
|
|
|
|
| 332 |
add_generation_prompt=True,
|
| 333 |
return_tensors="pt",
|
| 334 |
enable_thinking=False
|
| 335 |
+
).to(device)
|
| 336 |
|
| 337 |
generation_kwargs = {
|
| 338 |
'input_ids': inputs,
|
|
|
|
| 353 |
@spaces.GPU(duration=60)
|
| 354 |
def generate_c2c(self, user_input: str) -> Generator[str, None, None]:
|
| 355 |
"""Generate response from C2C model with streaming."""
|
| 356 |
+
# Move model to GPU for ZeroGPU
|
| 357 |
+
device = torch.device("cuda" if torch.cuda.is_available() else self.device)
|
| 358 |
+
if ZEROGPU_AVAILABLE and self.c2c_model.device.type != "cuda":
|
| 359 |
+
self.c2c_model.to(device)
|
| 360 |
+
|
| 361 |
messages = [{"role": "system", "content": ""}, {"role": "user", "content": user_input}]
|
| 362 |
text = self.c2c_tokenizer.apply_chat_template(
|
| 363 |
messages, tokenize=False, add_generation_prompt=True, enable_thinking=False
|
| 364 |
)
|
| 365 |
+
inputs = self.c2c_tokenizer(text, return_tensors="pt").to(device)
|
| 366 |
|
| 367 |
# Setup streamer
|
| 368 |
streamer = TextIteratorStreamer(
|
|
|
|
| 375 |
full_length = inputs.input_ids.shape[1]
|
| 376 |
instruction_index = torch.tensor([1, 0], dtype=torch.long).repeat(
|
| 377 |
full_length - 1, 1
|
| 378 |
+
).unsqueeze(0).to(device)
|
| 379 |
label_index = torch.tensor([-1, 0], dtype=torch.long).repeat(
|
| 380 |
1, 1
|
| 381 |
+
).unsqueeze(0).to(device)
|
| 382 |
position_ids = inputs.attention_mask.long().cumsum(-1) - 1 if inputs.attention_mask is not None else \
|
| 383 |
+
torch.arange(full_length, dtype=torch.long).unsqueeze(0).to(device)
|
| 384 |
|
| 385 |
# Generation parameters
|
| 386 |
generation_kwargs = {
|