""" Gradio Side-by-Side Model Comparison Demo This creates a web interface to compare three inference modes simultaneously: 1. Single: Regular HuggingFace model 2. T2T: Two-stage inference (shows context + answer) 3. C2C: Rosetta model with projectors ZeroGPU Support: - Models are loaded to CUDA if available - @spaces.GPU decorator handles device allocation automatically - Inputs are moved to match the model's actual device - Works seamlessly on both ZeroGPU and regular GPU environments """ import os import sys import torch import argparse import gradio as gr from pathlib import Path from typing import Optional, Generator from queue import Queue from threading import Thread from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer import spaces ZEROGPU_AVAILABLE = os.getenv("ZERO_GPU", "").lower() == "true" # ZeroGPU support - HuggingFace Spaces sets ZERO_GPU=true when ZeroGPU is available from rosetta.utils.evaluate import load_rosetta_model, load_hf_model, set_default_chat_template from rosetta.model.wrapper import RosettaModel from rosetta.baseline.multi_stage import TwoStageInference class ModelManager: """Manages loading and inference for all three model types.""" def __init__( self, single_model_name: str = "Qwen/Qwen3-0.6B", t2t_context_model: str = "Qwen/Qwen2.5-0.5B-Instruct", t2t_answer_model: str = "Qwen/Qwen3-0.6B", c2c_checkpoint_path: str = "local/checkpoints/qwen3_0.6b+qwen2.5_0.5b_Fuser", device: str = "auto" ): """ Initialize ModelManager with model configurations. Args: single_model_name: HuggingFace model name for single mode t2t_context_model: Context model for T2T mode t2t_answer_model: Answer model for T2T mode c2c_checkpoint_path: Path to C2C checkpoint directory device: Device to use (cuda, cpu, or auto) """ # Always use CUDA if available, ZeroGPU handles the rest if device == "auto": self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") else: self.device = torch.device(device) print(f"Using device: {self.device}") if ZEROGPU_AVAILABLE: print("ZeroGPU environment detected") # Model configurations self.single_model_name = single_model_name self.t2t_context_model = t2t_context_model self.t2t_answer_model = t2t_answer_model self.c2c_checkpoint_path = c2c_checkpoint_path # T2T prompt configurations self.t2t_background_prompt = "Briefly describe the most useful background to answer the question:\n\n{question}" self.t2t_answer_prompt = "Based on the background, answer the question:\n\n{question}" # Format for second round question self.t2t_context_max_tokens = 256 self.t2t_answer_max_tokens = 256 # Generation configuration (shared across all models) # To enable sampling: set use_sampling=True and adjust temperature/top_p/top_k # Current mode: Greedy decoding (do_sample=False) self.use_sampling = False # Set to True to enable sampling self.temperature = 0.7 # Used when use_sampling=True self.top_p = 0.8 # Used when use_sampling=True self.top_k = 20 # Used when use_sampling=True # Initialize models self.single_model = None self.single_tokenizer = None self.t2t_model = None self.c2c_model = None self.c2c_tokenizer = None # C2C model names (will be loaded from config) self.c2c_base_model = None self.c2c_teacher_model = None print("=" * 60) print("Initializing models... This may take a few minutes.") print("=" * 60) self._load_all_models() def _load_single_model(self): """Load single HuggingFace model.""" print(f"\n[Single] Loading {self.single_model_name}...") self.single_model, self.single_tokenizer = load_hf_model( self.single_model_name, self.device ) set_default_chat_template(self.single_tokenizer, self.single_model_name) print("[Single] ✓ Model loaded") def _load_t2t_model(self): """Load two-stage model.""" print(f"\n[T2T] Loading two-stage model...") print(f" Context: {self.t2t_context_model}") print(f" Answer: {self.t2t_answer_model}") print(f" Background prompt: {self.t2t_background_prompt}") print(f" Answer prompt: {self.t2t_answer_prompt}") self.t2t_model = TwoStageInference( context_model_path=self.t2t_context_model, answer_model_path=self.t2t_answer_model, device=str(self.device), background_prompt=self.t2t_background_prompt ) print("[T2T] ✓ Model loaded") def _load_c2c_model(self): """Load Rosetta (C2C) model.""" print(f"\n[C2C] Loading from {self.c2c_checkpoint_path}...") # Auto-download if checkpoint doesn't exist if not Path(self.c2c_checkpoint_path).exists(): print("[C2C] Downloading checkpoint from HuggingFace (may take a few minutes)...") try: from huggingface_hub import snapshot_download checkpoint_name = Path(self.c2c_checkpoint_path).name snapshot_download( repo_id='nics-efc/C2C_Fuser', allow_patterns=[f'{checkpoint_name}/*'], local_dir=str(Path(self.c2c_checkpoint_path).parent) ) print("[C2C] ✓ Download complete") except ImportError: raise ImportError("Install huggingface_hub: pip install huggingface_hub") except Exception as e: raise RuntimeError(f"Download failed: {e}\nManual download: https://huggingface.co/nics-efc/C2C_Fuser") # Load config import yaml config_path = Path(self.c2c_checkpoint_path) / "config.json" if not config_path.exists(): raise FileNotFoundError(f"Config file not found: {config_path}") with open(config_path, "r") as f: config = yaml.safe_load(f) # Store model names from config self.c2c_base_model = config["model"]["base_model"] self.c2c_teacher_model = config["model"]["teacher_model"] # Load Rosetta model subfolder_dir = Path(self.c2c_checkpoint_path) / "final" if not subfolder_dir.exists(): raise FileNotFoundError(f"Final checkpoint directory not found: {subfolder_dir}") model_config = { "model_name": "Rosetta", "rosetta_config": { "checkpoints_dir": str(subfolder_dir), "base_model": self.c2c_base_model, "teacher_model": self.c2c_teacher_model, "is_do_alignment": config["model"].get("is_do_alignment", False), "alignment_strategy": config["model"].get("alignment_strategy", "first") } } eval_config = {"checkpoints_dir": str(subfolder_dir)} self.c2c_model, self.c2c_tokenizer = load_rosetta_model( model_config, eval_config, self.device ) print("[C2C] ✓ Model loaded") def _load_all_models(self): """Load all models sequentially.""" try: self._load_single_model() self._load_t2t_model() self._load_c2c_model() print("\n" + "=" * 60) print("✓ All models loaded successfully!") print("=" * 60 + "\n") except Exception as e: print(f"\n✗ Error loading models: {e}") raise def _get_generation_kwargs(self, max_new_tokens: int) -> dict: """ Get generation kwargs with consistent settings across all models. Args: max_new_tokens: Maximum number of new tokens to generate Returns: Dictionary of generation parameters """ kwargs = { 'max_new_tokens': max_new_tokens, 'do_sample': self.use_sampling } if self.use_sampling: kwargs.update({ 'temperature': self.temperature, 'top_p': self.top_p, 'top_k': self.top_k }) return kwargs @spaces.GPU(duration=30) def generate_single(self, user_input: str) -> Generator[str, None, None]: """Generate response from single model with streaming.""" messages = [{"role": "system", "content": ""}, {"role": "user", "content": user_input}] text = self.single_tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=False ) # Use the model's actual device (ZeroGPU handles device placement) inputs = self.single_tokenizer(text, return_tensors="pt").to(self.single_model.device) # Setup streamer streamer = TextIteratorStreamer( self.single_tokenizer, skip_prompt=True, skip_special_tokens=True ) # Generation parameters generation_kwargs = { 'input_ids': inputs.input_ids, 'attention_mask': inputs.attention_mask, 'streamer': streamer, **self._get_generation_kwargs(max_new_tokens=2048) } # Run generation in separate thread thread = Thread(target=self.single_model.generate, kwargs=generation_kwargs) thread.start() # Stream tokens generated_text = "" for token in streamer: generated_text += token yield generated_text @spaces.GPU(duration=90) def generate_t2t(self, user_input: str) -> Generator[tuple[str, str], None, None]: """Generate response from T2T model with streaming (returns context, answer).""" # Stage 1: Context generation context_streamer = TextIteratorStreamer( self.t2t_model.context_tokenizer, skip_prompt=True, skip_special_tokens=True ) prompt = self.t2t_background_prompt.format(question=user_input) inputs = self.t2t_model.context_tokenizer.apply_chat_template( [{"role": "user", "content": prompt}], tokenize=True, add_generation_prompt=True, return_tensors="pt", enable_thinking=False ).to(self.t2t_model.context_model.device) generation_kwargs = { 'input_ids': inputs, 'streamer': context_streamer, **self._get_generation_kwargs(max_new_tokens=self.t2t_context_max_tokens) } # Generate context in thread thread = Thread(target=self.t2t_model.context_model.generate, kwargs=generation_kwargs) thread.start() # Stream context tokens context_text = "" for token in context_streamer: context_text += token yield context_text, "" thread.join() # Decode full context with torch.inference_mode(): outputs = self.t2t_model.context_model.generate( inputs, **self._get_generation_kwargs(max_new_tokens=self.t2t_context_max_tokens) ) context = self.t2t_model.context_tokenizer.batch_decode( outputs[:, inputs.shape[-1]:], skip_special_tokens=True )[0] # Stage 2: Answer generation answer_streamer = TextIteratorStreamer( self.t2t_model.answer_tokenizer, skip_prompt=True, skip_special_tokens=True ) # Format the second round question answer_question = self.t2t_answer_prompt.format(question=user_input) inputs = self.t2t_model.answer_tokenizer.apply_chat_template( [ {"role": "user", "content": prompt}, {"role": "assistant", "content": context}, {"role": "user", "content": answer_question} ], tokenize=True, add_generation_prompt=True, return_tensors="pt", enable_thinking=False ).to(self.t2t_model.answer_model.device) generation_kwargs = { 'input_ids': inputs, 'streamer': answer_streamer, **self._get_generation_kwargs(max_new_tokens=self.t2t_answer_max_tokens) } # Generate answer in thread thread = Thread(target=self.t2t_model.answer_model.generate, kwargs=generation_kwargs) thread.start() # Stream answer tokens answer_text = "" for token in answer_streamer: answer_text += token yield context_text, answer_text @spaces.GPU(duration=30) def generate_c2c(self, user_input: str) -> Generator[str, None, None]: """Generate response from C2C model with streaming.""" messages = [{"role": "system", "content": ""}, {"role": "user", "content": user_input}] text = self.c2c_tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=False ) # Use the model's actual device (ZeroGPU handles device placement) inputs = self.c2c_tokenizer(text, return_tensors="pt").to(self.c2c_model.device) # Setup streamer streamer = TextIteratorStreamer( self.c2c_tokenizer, skip_prompt=True, skip_special_tokens=True ) # Prepare C2C-specific inputs full_length = inputs.input_ids.shape[1] instruction_index = torch.tensor([1, 0], dtype=torch.long).repeat( full_length - 1, 1 ).unsqueeze(0).to(self.c2c_model.device) label_index = torch.tensor([-1, 0], dtype=torch.long).repeat( 1, 1 ).unsqueeze(0).to(self.c2c_model.device) position_ids = inputs.attention_mask.long().cumsum(-1) - 1 if inputs.attention_mask is not None else \ torch.arange(full_length, dtype=torch.long).unsqueeze(0).to(self.c2c_model.device) # Generation parameters generation_kwargs = { 'kv_cache_index': [instruction_index, label_index], 'input_ids': inputs.input_ids, 'attention_mask': inputs.attention_mask, 'position_ids': position_ids, 'streamer': streamer, **self._get_generation_kwargs(max_new_tokens=self.t2t_answer_max_tokens) } # Run generation in separate thread thread = Thread(target=self.c2c_model.generate, kwargs=generation_kwargs) thread.start() # Stream tokens generated_text = "" for token in streamer: generated_text += token yield generated_text def create_demo(model_manager: ModelManager): """Create Gradio interface.""" # Preset example questions EXAMPLE_QUESTIONS = { "example1": """Instead of asking why the act of destroying the environment might be immoral, Hill wants to ask ... A. Why the act of destroying nature might be immoral. B. Why people who destroy the environment might be bad people. C. How the decision to preserve the environment benefits the environment. D. Whether plants have interests.""", "example2": """Why is the Mars Exploration Rover Spirit currently tilted towards the north? A. Because it’s climbing up a big hill. B. Because it’s in the southern hemisphere where it is winter now. C. Because it’s in the northern hemisphere where it is winter now. D. Because one of its wheels broke.""" } def respond(user_input: str): """Main response function that yields updates for all three models.""" if not user_input.strip(): yield "", "", "", "" # Generators for each model single_gen = model_manager.generate_single(user_input) t2t_gen = model_manager.generate_t2t(user_input) c2c_gen = model_manager.generate_c2c(user_input) single_done = False t2t_done = False c2c_done = False single_text = "" t2t_context = "" t2t_answer = "" c2c_text = "" # Stream from all three models while not (single_done and t2t_done and c2c_done): # Update single if not single_done: try: single_text = next(single_gen) except StopIteration: single_done = True # Update T2T if not t2t_done: try: t2t_context, t2t_answer = next(t2t_gen) except StopIteration: t2t_done = True # Update C2C if not c2c_done: try: c2c_text = next(c2c_gen) except StopIteration: c2c_done = True # Yield current state yield single_text, t2t_context, t2t_answer, c2c_text # Create Gradio interface with gr.Blocks(title="C2C Demo", theme=gr.themes.Base()) as demo: # Header with logo with gr.Row(): with gr.Column(scale=1, min_width=100): gr.Image("https://raw.githubusercontent.com/thu-nics/C2C/main/resource/logo.png", show_label=False, show_download_button=False, container=False, height=80) with gr.Column(scale=5): gr.Markdown("# Cache-to-Cache Communication Demo") gr.Markdown("Compare three inference modes side-by-side: **Single** | **Text-to-Text Communication** | **Cache-to-Cache Communication**") gr.Markdown("---") # Input section gr.Markdown("## Question") # Preset question examples gr.Markdown("Example Questions:") with gr.Row(): example1_btn = gr.Button("📝 Example 1: Philosophy", size="sm") example2_btn = gr.Button("📝 Example 2: Astronomy", size="sm") with gr.Row(): user_input = gr.Textbox( label="", placeholder="Type your question here...", lines=2, scale=4, show_label=False ) with gr.Row(): submit_btn = gr.Button("🚀 Submit", variant="primary", scale=1) clear_btn = gr.Button("🗑️ Clear", scale=1) gr.Markdown("---") # Output section - three columns gr.Markdown("## Responses") with gr.Row(): # Single column with gr.Column(): gr.Markdown("### Single Model") gr.Markdown(f"*{model_manager.single_model_name}*") single_output = gr.Textbox( label="", lines=18, max_lines=30, interactive=False, show_label=False ) # T2T column (with two sub-boxes) with gr.Column(): gr.Markdown("### Text-to-Text Communication") gr.Markdown(f"*{model_manager.t2t_context_model} → {model_manager.t2t_answer_model}*") t2t_context_output = gr.Textbox( label="📝 Context", lines=6, max_lines=12, interactive=False ) t2t_answer_output = gr.Textbox( label="💬 Answer", lines=7, max_lines=14, interactive=False ) # C2C column with gr.Column(): gr.Markdown("### Cache-to-Cache Communication") gr.Markdown(f"*{model_manager.c2c_teacher_model} → {model_manager.c2c_base_model}*") c2c_output = gr.Textbox( label="", lines=18, max_lines=30, interactive=False, show_label=False ) # Event handlers submit_btn.click( fn=respond, inputs=[user_input], outputs=[single_output, t2t_context_output, t2t_answer_output, c2c_output] ) user_input.submit( fn=respond, inputs=[user_input], outputs=[single_output, t2t_context_output, t2t_answer_output, c2c_output] ) clear_btn.click( fn=lambda: ("", "", "", "", ""), inputs=None, outputs=[user_input, single_output, t2t_context_output, t2t_answer_output, c2c_output] ) # Example question handlers example1_btn.click( fn=lambda: EXAMPLE_QUESTIONS["example1"], inputs=None, outputs=[user_input] ) example2_btn.click( fn=lambda: EXAMPLE_QUESTIONS["example2"], inputs=None, outputs=[user_input] ) # Disclaimer notice gr.Markdown("---") gr.Markdown(""" ### ⚠️ Disclaimer This demo is provided for **research purposes only** on an **"AS-IS" basis without warranties of any kind**. - C2C models are trained only on English corpus and are in early experimental stages. - Models may generate harmful, biased, or inaccurate content. - Generated outputs do not represent the views or opinions of the creators. - **Users are solely responsible** for any use of generated content and use this demo at their own risk. - We assume **no liability** for any damages, losses, or consequences arising from the use of this demo or its outputs. --- C2C is not perfect and is in its early stages, representing a new communication paradigm. **We welcome the community to explore the possibilities of C2C with us!** 🚀 """) return demo def main(): """Main entry point.""" print("=" * 60) print("Model Comparison Demo - Gradio Interface") print("=" * 60) # Initialize models # C2C-S: qwen3_0.6b+qwen2.5_0.5b_Fuser # context_model_name = "Qwen/Qwen2.5-0.5B-Instruct" # c2c_checkpoint_path = "local/checkpoints/qwen3_0.6b+qwen2.5_0.5b_Fuser" # C2C-L: qwen3_0.6b+qwen2.5_0.5b_Fuser_large context_model_name = "Qwen/Qwen3-4B-Base" c2c_checkpoint_path = "local/checkpoints/qwen3_0.6b+qwen3_4b_base_Fuser" answer_model_name = "Qwen/Qwen3-0.6B" model_manager = ModelManager( single_model_name=answer_model_name, t2t_context_model=context_model_name, t2t_answer_model=answer_model_name, c2c_checkpoint_path=c2c_checkpoint_path ) # Create and launch demo demo = create_demo(model_manager) print("\n" + "=" * 60) print("🚀 Launching Gradio interface...") print("=" * 60) demo.launch( server_name="0.0.0.0", server_port=7860, share=False, show_error=True ) if __name__ == "__main__": main()