Spaces:
Sleeping
Sleeping
| import json | |
| import torch | |
| import torch.nn as nn | |
| def match_name_keywords(n: str, name_keywords: list): | |
| out = False | |
| for b in name_keywords: | |
| if b in n: | |
| out = True | |
| break | |
| return out | |
| def get_param_dict(args, model_without_ddp: nn.Module): | |
| try: | |
| param_dict_type = args.param_dict_type | |
| except: | |
| param_dict_type = 'default' | |
| assert param_dict_type in ['default', 'ddetr_in_mmdet', 'large_wd'] | |
| # by default | |
| # import pdb;pdb.set_trace() | |
| if param_dict_type == 'default': | |
| param_dicts = [ | |
| {"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" not in n and p.requires_grad]}, | |
| { | |
| "params": [p for n, p in model_without_ddp.named_parameters() if "backbone" in n and p.requires_grad], | |
| "lr": args.lr_backbone, | |
| } | |
| ] | |
| return param_dicts | |
| if param_dict_type == 'ddetr_in_mmdet': | |
| param_dicts = [ | |
| { | |
| "params": | |
| [p for n, p in model_without_ddp.named_parameters() | |
| if not match_name_keywords(n, args.lr_backbone_names) and not match_name_keywords(n, args.lr_linear_proj_names) and p.requires_grad], | |
| "lr": args.lr, | |
| }, | |
| { | |
| "params": [p for n, p in model_without_ddp.named_parameters() | |
| if match_name_keywords(n, args.lr_backbone_names) and p.requires_grad], | |
| "lr": args.lr_backbone, | |
| }, | |
| { | |
| "params": [p for n, p in model_without_ddp.named_parameters() | |
| if match_name_keywords(n, args.lr_linear_proj_names) and p.requires_grad], | |
| "lr": args.lr_linear_proj_mult, | |
| } | |
| ] | |
| return param_dicts | |
| if param_dict_type == 'large_wd': | |
| param_dicts = [ | |
| { | |
| "params": | |
| [p for n, p in model_without_ddp.named_parameters() | |
| if not match_name_keywords(n, ['backbone']) and not match_name_keywords(n, ['norm', 'bias']) and p.requires_grad], | |
| }, | |
| { | |
| "params": [p for n, p in model_without_ddp.named_parameters() | |
| if match_name_keywords(n, ['backbone']) and match_name_keywords(n, ['norm', 'bias']) and p.requires_grad], | |
| "lr": args.lr_backbone, | |
| "weight_decay": 0.0, | |
| }, | |
| { | |
| "params": [p for n, p in model_without_ddp.named_parameters() | |
| if match_name_keywords(n, ['backbone']) and not match_name_keywords(n, ['norm', 'bias']) and p.requires_grad], | |
| "lr": args.lr_backbone, | |
| "weight_decay": args.weight_decay, | |
| }, | |
| { | |
| "params": | |
| [p for n, p in model_without_ddp.named_parameters() | |
| if not match_name_keywords(n, ['backbone']) and match_name_keywords(n, ['norm', 'bias']) and p.requires_grad], | |
| "lr": args.lr, | |
| "weight_decay": 0.0, | |
| } | |
| ] | |
| # print("param_dicts: {}".format(param_dicts)) | |
| return param_dicts |