Spaces:
Sleeping
Sleeping
| from collections import OrderedDict | |
| from copy import deepcopy | |
| import json | |
| import warnings | |
| import torch | |
| import numpy as np | |
| def slprint(x, name='x'): | |
| if isinstance(x, (torch.Tensor, np.ndarray)): | |
| print(f'{name}.shape:', x.shape) | |
| elif isinstance(x, (tuple, list)): | |
| print('type x:', type(x)) | |
| for i in range(min(10, len(x))): | |
| slprint(x[i], f'{name}[{i}]') | |
| elif isinstance(x, dict): | |
| for k,v in x.items(): | |
| slprint(v, f'{name}[{k}]') | |
| else: | |
| print(f'{name}.type:', type(x)) | |
| def clean_state_dict(state_dict): | |
| new_state_dict = OrderedDict() | |
| for k, v in state_dict.items(): | |
| if k[:7] == 'module.': | |
| k = k[7:] # remove `module.` | |
| new_state_dict[k] = v | |
| return new_state_dict | |
| def renorm(img: torch.FloatTensor, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) \ | |
| -> torch.FloatTensor: | |
| # img: tensor(3,H,W) or tensor(B,3,H,W) | |
| # return: same as img | |
| assert img.dim() == 3 or img.dim() == 4, "img.dim() should be 3 or 4 but %d" % img.dim() | |
| if img.dim() == 3: | |
| assert img.size(0) == 3, 'img.size(0) shoule be 3 but "%d". (%s)' % (img.size(0), str(img.size())) | |
| img_perm = img.permute(1,2,0) | |
| mean = torch.Tensor(mean) | |
| std = torch.Tensor(std) | |
| img_res = img_perm * std + mean | |
| return img_res.permute(2,0,1) | |
| else: # img.dim() == 4 | |
| assert img.size(1) == 3, 'img.size(1) shoule be 3 but "%d". (%s)' % (img.size(1), str(img.size())) | |
| img_perm = img.permute(0,2,3,1) | |
| mean = torch.Tensor(mean) | |
| std = torch.Tensor(std) | |
| img_res = img_perm * std + mean | |
| return img_res.permute(0,3,1,2) | |
| class CocoClassMapper(): | |
| def __init__(self) -> None: | |
| self.category_map_str = {"1": 1, "2": 2, "3": 3, "4": 4, "5": 5, "6": 6, "7": 7, "8": 8, "9": 9, "10": 10, "11": 11, "13": 12, "14": 13, "15": 14, "16": 15, "17": 16, "18": 17, "19": 18, "20": 19, "21": 20, "22": 21, "23": 22, "24": 23, "25": 24, "27": 25, "28": 26, "31": 27, "32": 28, "33": 29, "34": 30, "35": 31, "36": 32, "37": 33, "38": 34, "39": 35, "40": 36, "41": 37, "42": 38, "43": 39, "44": 40, "46": 41, "47": 42, "48": 43, "49": 44, "50": 45, "51": 46, "52": 47, "53": 48, "54": 49, "55": 50, "56": 51, "57": 52, "58": 53, "59": 54, "60": 55, "61": 56, "62": 57, "63": 58, "64": 59, "65": 60, "67": 61, "70": 62, "72": 63, "73": 64, "74": 65, "75": 66, "76": 67, "77": 68, "78": 69, "79": 70, "80": 71, "81": 72, "82": 73, "84": 74, "85": 75, "86": 76, "87": 77, "88": 78, "89": 79, "90": 80} | |
| self.origin2compact_mapper = {int(k):v-1 for k,v in self.category_map_str.items()} | |
| self.compact2origin_mapper = {int(v-1):int(k) for k,v in self.category_map_str.items()} | |
| def origin2compact(self, idx): | |
| return self.origin2compact_mapper[int(idx)] | |
| def compact2origin(self, idx): | |
| return self.compact2origin_mapper[int(idx)] | |
| def to_device(item, device): | |
| if isinstance(item, torch.Tensor): | |
| return item.to(device) | |
| elif isinstance(item, list): | |
| return [to_device(i, device) for i in item] | |
| elif isinstance(item, dict): | |
| return {k: to_device(v, device) for k,v in item.items()} | |
| else: | |
| raise NotImplementedError("Call Shilong if you use other containers! type: {}".format(type(item))) | |
| # | |
| def get_gaussian_mean(x, axis, other_axis, softmax=True): | |
| """ | |
| Args: | |
| x (float): Input images(BxCxHxW) | |
| axis (int): The index for weighted mean | |
| other_axis (int): The other index | |
| Returns: weighted index for axis, BxC | |
| """ | |
| mat2line = torch.sum(x, axis=other_axis) | |
| # mat2line = mat2line / mat2line.mean() * 10 | |
| if softmax: | |
| u = torch.softmax(mat2line, axis=2) | |
| else: | |
| u = mat2line / (mat2line.sum(2, keepdim=True) + 1e-6) | |
| size = x.shape[axis] | |
| ind = torch.linspace(0, 1, size).to(x.device) | |
| batch = x.shape[0] | |
| channel = x.shape[1] | |
| index = ind.repeat([batch, channel, 1]) | |
| mean_position = torch.sum(index * u, dim=2) | |
| return mean_position | |
| def get_expected_points_from_map(hm, softmax=True): | |
| """get_gaussian_map_from_points | |
| B,C,H,W -> B,N,2 float(0, 1) float(0, 1) | |
| softargmax function | |
| Args: | |
| hm (float): Input images(BxCxHxW) | |
| Returns: | |
| weighted index for axis, BxCx2. float between 0 and 1. | |
| """ | |
| # hm = 10*hm | |
| B,C,H,W = hm.shape | |
| y_mean = get_gaussian_mean(hm, 2, 3, softmax=softmax) # B,C | |
| x_mean = get_gaussian_mean(hm, 3, 2, softmax=softmax) # B,C | |
| # return torch.cat((x_mean.unsqueeze(-1), y_mean.unsqueeze(-1)), 2) | |
| return torch.stack([x_mean, y_mean], dim=2) | |
| # Positional encoding (section 5.1) | |
| # borrow from nerf | |
| class Embedder: | |
| def __init__(self, **kwargs): | |
| self.kwargs = kwargs | |
| self.create_embedding_fn() | |
| def create_embedding_fn(self): | |
| embed_fns = [] | |
| d = self.kwargs['input_dims'] | |
| out_dim = 0 | |
| if self.kwargs['include_input']: | |
| embed_fns.append(lambda x : x) | |
| out_dim += d | |
| max_freq = self.kwargs['max_freq_log2'] | |
| N_freqs = self.kwargs['num_freqs'] | |
| if self.kwargs['log_sampling']: | |
| freq_bands = 2.**torch.linspace(0., max_freq, steps=N_freqs) | |
| else: | |
| freq_bands = torch.linspace(2.**0., 2.**max_freq, steps=N_freqs) | |
| for freq in freq_bands: | |
| for p_fn in self.kwargs['periodic_fns']: | |
| embed_fns.append(lambda x, p_fn=p_fn, freq=freq : p_fn(x * freq)) | |
| out_dim += d | |
| self.embed_fns = embed_fns | |
| self.out_dim = out_dim | |
| def embed(self, inputs): | |
| return torch.cat([fn(inputs) for fn in self.embed_fns], -1) | |
| def get_embedder(multires, i=0): | |
| import torch.nn as nn | |
| if i == -1: | |
| return nn.Identity(), 3 | |
| embed_kwargs = { | |
| 'include_input' : True, | |
| 'input_dims' : 3, | |
| 'max_freq_log2' : multires-1, | |
| 'num_freqs' : multires, | |
| 'log_sampling' : True, | |
| 'periodic_fns' : [torch.sin, torch.cos], | |
| } | |
| embedder_obj = Embedder(**embed_kwargs) | |
| embed = lambda x, eo=embedder_obj : eo.embed(x) | |
| return embed, embedder_obj.out_dim | |
| class APOPMeter(): | |
| def __init__(self) -> None: | |
| self.tp = 0 | |
| self.fp = 0 | |
| self.tn = 0 | |
| self.fn = 0 | |
| def update(self, pred, gt): | |
| """ | |
| Input: | |
| pred, gt: Tensor() | |
| """ | |
| assert pred.shape == gt.shape | |
| self.tp += torch.logical_and(pred == 1, gt == 1).sum().item() | |
| self.fp += torch.logical_and(pred == 1, gt == 0).sum().item() | |
| self.tn += torch.logical_and(pred == 0, gt == 0).sum().item() | |
| self.tn += torch.logical_and(pred == 1, gt == 0).sum().item() | |
| def update_cm(self, tp, fp, tn, fn): | |
| self.tp += tp | |
| self.fp += fp | |
| self.tn += tn | |
| self.tn += fn | |
| def inverse_sigmoid(x, eps=1e-5): | |
| x = x.clamp(min=0, max=1) | |
| x1 = x.clamp(min=eps) | |
| x2 = (1 - x).clamp(min=eps) | |
| return torch.log(x1/x2) | |
| import argparse | |
| from util.slconfig import SLConfig | |
| def get_raw_dict(args): | |
| """ | |
| return the dicf contained in args. | |
| e.g: | |
| >>> with open(path, 'w') as f: | |
| json.dump(get_raw_dict(args), f, indent=2) | |
| """ | |
| if isinstance(args, argparse.Namespace): | |
| return vars(args) | |
| elif isinstance(args, dict): | |
| return args | |
| elif isinstance(args, SLConfig): | |
| return args._cfg_dict | |
| else: | |
| raise NotImplementedError("Unknown type {}".format(type(args))) | |
| def stat_tensors(tensor): | |
| assert tensor.dim() == 1 | |
| tensor_sm = tensor.softmax(0) | |
| entropy = (tensor_sm * torch.log(tensor_sm + 1e-9)).sum() | |
| return { | |
| 'max': tensor.max(), | |
| 'min': tensor.min(), | |
| 'mean': tensor.mean(), | |
| 'var': tensor.var(), | |
| 'std': tensor.var() ** 0.5, | |
| 'entropy': entropy | |
| } | |
| class NiceRepr: | |
| """Inherit from this class and define ``__nice__`` to "nicely" print your | |
| objects. | |
| Defines ``__str__`` and ``__repr__`` in terms of ``__nice__`` function | |
| Classes that inherit from :class:`NiceRepr` should redefine ``__nice__``. | |
| If the inheriting class has a ``__len__``, method then the default | |
| ``__nice__`` method will return its length. | |
| Example: | |
| >>> class Foo(NiceRepr): | |
| ... def __nice__(self): | |
| ... return 'info' | |
| >>> foo = Foo() | |
| >>> assert str(foo) == '<Foo(info)>' | |
| >>> assert repr(foo).startswith('<Foo(info) at ') | |
| Example: | |
| >>> class Bar(NiceRepr): | |
| ... pass | |
| >>> bar = Bar() | |
| >>> import pytest | |
| >>> with pytest.warns(None) as record: | |
| >>> assert 'object at' in str(bar) | |
| >>> assert 'object at' in repr(bar) | |
| Example: | |
| >>> class Baz(NiceRepr): | |
| ... def __len__(self): | |
| ... return 5 | |
| >>> baz = Baz() | |
| >>> assert str(baz) == '<Baz(5)>' | |
| """ | |
| def __nice__(self): | |
| """str: a "nice" summary string describing this module""" | |
| if hasattr(self, '__len__'): | |
| # It is a common pattern for objects to use __len__ in __nice__ | |
| # As a convenience we define a default __nice__ for these objects | |
| return str(len(self)) | |
| else: | |
| # In all other cases force the subclass to overload __nice__ | |
| raise NotImplementedError( | |
| f'Define the __nice__ method for {self.__class__!r}') | |
| def __repr__(self): | |
| """str: the string of the module""" | |
| try: | |
| nice = self.__nice__() | |
| classname = self.__class__.__name__ | |
| return f'<{classname}({nice}) at {hex(id(self))}>' | |
| except NotImplementedError as ex: | |
| warnings.warn(str(ex), category=RuntimeWarning) | |
| return object.__repr__(self) | |
| def __str__(self): | |
| """str: the string of the module""" | |
| try: | |
| classname = self.__class__.__name__ | |
| nice = self.__nice__() | |
| return f'<{classname}({nice})>' | |
| except NotImplementedError as ex: | |
| warnings.warn(str(ex), category=RuntimeWarning) | |
| return object.__repr__(self) | |
| def ensure_rng(rng=None): | |
| """Coerces input into a random number generator. | |
| If the input is None, then a global random state is returned. | |
| If the input is a numeric value, then that is used as a seed to construct a | |
| random state. Otherwise the input is returned as-is. | |
| Adapted from [1]_. | |
| Args: | |
| rng (int | numpy.random.RandomState | None): | |
| if None, then defaults to the global rng. Otherwise this can be an | |
| integer or a RandomState class | |
| Returns: | |
| (numpy.random.RandomState) : rng - | |
| a numpy random number generator | |
| References: | |
| .. [1] https://gitlab.kitware.com/computer-vision/kwarray/blob/master/kwarray/util_random.py#L270 # noqa: E501 | |
| """ | |
| if rng is None: | |
| rng = np.random.mtrand._rand | |
| elif isinstance(rng, int): | |
| rng = np.random.RandomState(rng) | |
| else: | |
| rng = rng | |
| return rng | |
| def random_boxes(num=1, scale=1, rng=None): | |
| """Simple version of ``kwimage.Boxes.random`` | |
| Returns: | |
| Tensor: shape (n, 4) in x1, y1, x2, y2 format. | |
| References: | |
| https://gitlab.kitware.com/computer-vision/kwimage/blob/master/kwimage/structs/boxes.py#L1390 | |
| Example: | |
| >>> num = 3 | |
| >>> scale = 512 | |
| >>> rng = 0 | |
| >>> boxes = random_boxes(num, scale, rng) | |
| >>> print(boxes) | |
| tensor([[280.9925, 278.9802, 308.6148, 366.1769], | |
| [216.9113, 330.6978, 224.0446, 456.5878], | |
| [405.3632, 196.3221, 493.3953, 270.7942]]) | |
| """ | |
| rng = ensure_rng(rng) | |
| tlbr = rng.rand(num, 4).astype(np.float32) | |
| tl_x = np.minimum(tlbr[:, 0], tlbr[:, 2]) | |
| tl_y = np.minimum(tlbr[:, 1], tlbr[:, 3]) | |
| br_x = np.maximum(tlbr[:, 0], tlbr[:, 2]) | |
| br_y = np.maximum(tlbr[:, 1], tlbr[:, 3]) | |
| tlbr[:, 0] = tl_x * scale | |
| tlbr[:, 1] = tl_y * scale | |
| tlbr[:, 2] = br_x * scale | |
| tlbr[:, 3] = br_y * scale | |
| boxes = torch.from_numpy(tlbr) | |
| return boxes | |
| class ModelEma(torch.nn.Module): | |
| def __init__(self, model, decay=0.9997, device=None): | |
| super(ModelEma, self).__init__() | |
| # make a copy of the model for accumulating moving average of weights | |
| self.module = deepcopy(model) | |
| self.module.eval() | |
| self.decay = decay | |
| self.device = device # perform ema on different device from model if set | |
| if self.device is not None: | |
| self.module.to(device=device) | |
| def _update(self, model, update_fn): | |
| with torch.no_grad(): | |
| for ema_v, model_v in zip(self.module.state_dict().values(), model.state_dict().values()): | |
| if self.device is not None: | |
| model_v = model_v.to(device=self.device) | |
| ema_v.copy_(update_fn(ema_v, model_v)) | |
| def update(self, model): | |
| self._update(model, update_fn=lambda e, m: self.decay * e + (1. - self.decay) * m) | |
| def set(self, model): | |
| self._update(model, update_fn=lambda e, m: m) | |
| class BestMetricSingle(): | |
| def __init__(self, init_res=0.0, better='large') -> None: | |
| self.init_res = init_res | |
| self.best_res = init_res | |
| self.best_ep = -1 | |
| self.better = better | |
| assert better in ['large', 'small'] | |
| def isbetter(self, new_res, old_res): | |
| if self.better == 'large': | |
| return new_res > old_res | |
| if self.better == 'small': | |
| return new_res < old_res | |
| def update(self, new_res, ep): | |
| if self.isbetter(new_res, self.best_res): | |
| self.best_res = new_res | |
| self.best_ep = ep | |
| return True | |
| return False | |
| def __str__(self) -> str: | |
| return "best_res: {}\t best_ep: {}".format(self.best_res, self.best_ep) | |
| def __repr__(self) -> str: | |
| return self.__str__() | |
| def summary(self) -> dict: | |
| return { | |
| 'best_res': self.best_res, | |
| 'best_ep': self.best_ep, | |
| } | |
| class BestMetricHolder(): | |
| def __init__(self, init_res=0.0, better='large', use_ema=False) -> None: | |
| self.best_all = BestMetricSingle(init_res, better) | |
| self.use_ema = use_ema | |
| if use_ema: | |
| self.best_ema = BestMetricSingle(init_res, better) | |
| self.best_regular = BestMetricSingle(init_res, better) | |
| def update(self, new_res, epoch, is_ema=False): | |
| """ | |
| return if the results is the best. | |
| """ | |
| if not self.use_ema: | |
| return self.best_all.update(new_res, epoch) | |
| else: | |
| if is_ema: | |
| self.best_ema.update(new_res, epoch) | |
| return self.best_all.update(new_res, epoch) | |
| else: | |
| self.best_regular.update(new_res, epoch) | |
| return self.best_all.update(new_res, epoch) | |
| def summary(self): | |
| if not self.use_ema: | |
| return self.best_all.summary() | |
| res = {} | |
| res.update({f'all_{k}':v for k,v in self.best_all.summary().items()}) | |
| res.update({f'regular_{k}':v for k,v in self.best_regular.summary().items()}) | |
| res.update({f'ema_{k}':v for k,v in self.best_ema.summary().items()}) | |
| return res | |
| def __repr__(self) -> str: | |
| return json.dumps(self.summary(), indent=2) | |
| def __str__(self) -> str: | |
| return self.__repr__() | |