Spaces:
Runtime error
Runtime error
update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
sys.path.append(os.getcwd())
|
| 4 |
+
sys.path.append(os.path.join(os.getcwd(), "annotator/entityseg"))
|
| 5 |
+
import cv2
|
| 6 |
+
import spaces
|
| 7 |
+
import einops
|
| 8 |
+
import torch
|
| 9 |
import gradio as gr
|
| 10 |
+
import numpy as np
|
| 11 |
+
from pytorch_lightning import seed_everything
|
| 12 |
+
from PIL import Image
|
| 13 |
|
| 14 |
+
from annotator.util import resize_image, HWC3
|
| 15 |
+
from annotator.canny import CannyDetector
|
| 16 |
+
from annotator.midas import MidasDetector
|
| 17 |
+
from annotator.entityseg import EntitysegDetector
|
| 18 |
+
from annotator.openpose import OpenposeDetector
|
| 19 |
+
from annotator.content import ContentDetector
|
| 20 |
+
from annotator.cielab import CIELabDetector
|
| 21 |
|
| 22 |
+
from models.util import create_model, load_state_dict
|
| 23 |
+
from models.ddim_hacked import DDIMSampler
|
| 24 |
+
|
| 25 |
+
'''
|
| 26 |
+
define conditions
|
| 27 |
+
'''
|
| 28 |
+
max_conditions = 8
|
| 29 |
+
condition_types = ["edge", "depth", "seg", "pose", "content", "color"]
|
| 30 |
+
|
| 31 |
+
apply_canny = CannyDetector()
|
| 32 |
+
apply_midas = MidasDetector()
|
| 33 |
+
apply_seg = EntitysegDetector()
|
| 34 |
+
apply_openpose = OpenposeDetector()
|
| 35 |
+
apply_content = ContentDetector()
|
| 36 |
+
apply_color = CIELabDetector()
|
| 37 |
+
|
| 38 |
+
processors = {
|
| 39 |
+
"edge": apply_canny,
|
| 40 |
+
"depth": apply_midas,
|
| 41 |
+
"seg": apply_seg,
|
| 42 |
+
"pose": apply_openpose,
|
| 43 |
+
"content": apply_content,
|
| 44 |
+
"color": apply_color,
|
| 45 |
+
}
|
| 46 |
+
|
| 47 |
+
descriptors = {
|
| 48 |
+
"edge": "canny",
|
| 49 |
+
"depth": "depth",
|
| 50 |
+
"seg": "segmentation",
|
| 51 |
+
"pose": "openpose",
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
@torch.no_grad()
|
| 56 |
+
def get_unconditional_global(c_global):
|
| 57 |
+
if isinstance(c_global, dict):
|
| 58 |
+
return {k:torch.zeros_like(v) for k,v in c_global.items()}
|
| 59 |
+
elif isinstance(c_global, list):
|
| 60 |
+
return [torch.zeros_like(c) for c in c_global]
|
| 61 |
+
else:
|
| 62 |
+
return torch.zeros_like(c_global)
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
@spaces.GPU
|
| 66 |
+
def process(prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps,
|
| 67 |
+
strength, scale, seed, eta, global_strength, color_strength, local_strength, *args):
|
| 68 |
+
|
| 69 |
+
seed_everything(seed)
|
| 70 |
+
|
| 71 |
+
conds_and_types = args
|
| 72 |
+
conds = conds_and_types[0::2]
|
| 73 |
+
types = conds_and_types[1::2]
|
| 74 |
+
conds = [c for c in conds if c is not None]
|
| 75 |
+
types = [t for t in types if t is not None]
|
| 76 |
+
assert len(conds) == len(types)
|
| 77 |
+
|
| 78 |
+
detected_maps = []
|
| 79 |
+
other_maps = []
|
| 80 |
+
tasks = []
|
| 81 |
+
|
| 82 |
+
# initialize global control
|
| 83 |
+
global_conditions = dict(clipembedding=np.zeros((1, 768), dtype=np.float32), color=np.zeros((1, 180), dtype=np.float32))
|
| 84 |
+
global_control = {}
|
| 85 |
+
for key in global_conditions.keys():
|
| 86 |
+
global_cond = torch.from_numpy(global_conditions[key]).unsqueeze(0).repeat(num_samples, 1, 1)
|
| 87 |
+
global_cond = global_cond.cuda().to(memory_format=torch.contiguous_format).float()
|
| 88 |
+
global_control[key] = global_cond
|
| 89 |
+
|
| 90 |
+
# initialize local control
|
| 91 |
+
anchor_image = HWC3(np.zeros((image_resolution, image_resolution, 3)).astype(np.uint8))
|
| 92 |
+
oH, oW = anchor_image.shape[:2]
|
| 93 |
+
H, W, C = resize_image(anchor_image, image_resolution).shape
|
| 94 |
+
anchor_tensor = ddim_sampler.model.qformer_vis_processor['eval'](Image.fromarray(anchor_image))
|
| 95 |
+
local_control = torch.tensor(anchor_tensor).cuda().to(memory_format=torch.contiguous_format).half()
|
| 96 |
+
|
| 97 |
+
task_prompt = ''
|
| 98 |
+
|
| 99 |
+
with torch.no_grad():
|
| 100 |
+
|
| 101 |
+
# set up local control
|
| 102 |
+
for cond, typ in zip(conds, types):
|
| 103 |
+
if typ in ['edge', 'depth', 'seg', 'pose']:
|
| 104 |
+
oH, oW = cond.shape[:2]
|
| 105 |
+
cond_image = HWC3(cv2.resize(cond, (W, H)))
|
| 106 |
+
cond_detected_map = processors[typ](cond_image)
|
| 107 |
+
cond_detected_map = HWC3(cond_detected_map)
|
| 108 |
+
detected_maps.append(cond_detected_map)
|
| 109 |
+
tasks.append(descriptors[typ])
|
| 110 |
+
elif typ in ['content']:
|
| 111 |
+
other_maps.append(cond)
|
| 112 |
+
content_image = cv2.cvtColor(cond, cv2.COLOR_RGB2BGR)
|
| 113 |
+
content_emb = apply_content(content_image)
|
| 114 |
+
global_conditions['clipembedding'] = content_emb
|
| 115 |
+
elif typ in ['color']:
|
| 116 |
+
color_hist = apply_color(cond)
|
| 117 |
+
global_conditions['color'] = color_hist
|
| 118 |
+
color_palette = apply_color.hist_to_palette(color_hist) # (50, 189, 3)
|
| 119 |
+
color_palette = cv2.resize(color_palette, (W, H), cv2.INTER_NEAREST)
|
| 120 |
+
other_maps.append(color_palette)
|
| 121 |
+
if len(detected_maps) > 0:
|
| 122 |
+
local_control = torch.cat([ddim_sampler.model.qformer_vis_processor['eval'](Image.fromarray(img)).cuda().unsqueeze(0) for img in detected_maps], dim=1)
|
| 123 |
+
task_prompt = ' conditioned on ' + ' and '.join(tasks)
|
| 124 |
+
local_control = local_control.repeat(num_samples, 1, 1, 1)
|
| 125 |
+
|
| 126 |
+
# set up global control
|
| 127 |
+
for key in global_conditions.keys():
|
| 128 |
+
global_cond = torch.from_numpy(global_conditions[key]).unsqueeze(0).repeat(num_samples, 1, 1)
|
| 129 |
+
global_cond = global_cond.cuda().to(memory_format=torch.contiguous_format).float()
|
| 130 |
+
global_control[key] = global_cond
|
| 131 |
+
|
| 132 |
+
# set up prompt
|
| 133 |
+
input_prompt = (prompt + ' ' + task_prompt).strip()
|
| 134 |
+
|
| 135 |
+
# set up cfg
|
| 136 |
+
uc_local_control = local_control
|
| 137 |
+
uc_global_control = get_unconditional_global(global_control)
|
| 138 |
+
cond = {
|
| 139 |
+
"local_control": [local_control],
|
| 140 |
+
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
|
| 141 |
+
"global_control": [global_control],
|
| 142 |
+
"text": [[input_prompt] * num_samples],
|
| 143 |
+
}
|
| 144 |
+
un_cond = {
|
| 145 |
+
"local_control": [uc_local_control],
|
| 146 |
+
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)],
|
| 147 |
+
'global_control': [uc_global_control],
|
| 148 |
+
"text": [[input_prompt] * num_samples],
|
| 149 |
+
}
|
| 150 |
+
shape = (4, H // 8, W // 8)
|
| 151 |
+
|
| 152 |
+
model.control_scales = [strength] * 13
|
| 153 |
+
samples, _ = ddim_sampler.sample(ddim_steps, num_samples,
|
| 154 |
+
shape, cond, verbose=False, eta=eta,
|
| 155 |
+
unconditional_guidance_scale=scale,
|
| 156 |
+
unconditional_conditioning=un_cond,
|
| 157 |
+
global_strength=global_strength,
|
| 158 |
+
color_strength=color_strength,
|
| 159 |
+
local_strength=local_strength)
|
| 160 |
+
|
| 161 |
+
x_samples = model.decode_first_stage(samples)
|
| 162 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 163 |
+
results = [x_samples[i] for i in range(num_samples)]
|
| 164 |
+
|
| 165 |
+
results = [cv2.resize(res, (oW, oH)) for res in results]
|
| 166 |
+
detected_maps = [cv2.resize(maps, (oW, oH)) for maps in detected_maps]
|
| 167 |
+
return [results, detected_maps+other_maps]
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
def variable_image_outputs(k):
|
| 171 |
+
if k is None:
|
| 172 |
+
k = 1
|
| 173 |
+
k = int(k)
|
| 174 |
+
imageboxes = []
|
| 175 |
+
for i in range(max_conditions):
|
| 176 |
+
if i<k:
|
| 177 |
+
with gr.Row(visible=True):
|
| 178 |
+
img = gr.Image(sources=['upload'], type="numpy", label=f'Condition {i+1}', visible=True, interactive=True, scale=3, height=200)
|
| 179 |
+
typ = gr.Dropdown(condition_types, visible=True, interactive=True, label="type", scale=1)
|
| 180 |
+
else:
|
| 181 |
+
with gr.Row(visible=False):
|
| 182 |
+
img = gr.Image(sources=['upload'], type="numpy", label=f'Condition {i+1}', visible=False, scale=3, height=200)
|
| 183 |
+
typ = gr.Dropdown(condition_types, visible=False, interactive=True, label="type", scale=1)
|
| 184 |
+
imageboxes.append(img)
|
| 185 |
+
imageboxes.append(typ)
|
| 186 |
+
return imageboxes
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
'''
|
| 190 |
+
define model
|
| 191 |
+
'''
|
| 192 |
+
config_file = "configs/anycontrol.yaml"
|
| 193 |
+
model_file = "ckpts/anycontrol_15.ckpt"
|
| 194 |
+
model = create_model(config_file).cpu()
|
| 195 |
+
model.load_state_dict(load_state_dict(model_file, location='cuda'))
|
| 196 |
+
model = model.cuda()
|
| 197 |
+
ddim_sampler = DDIMSampler(model)
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
block = gr.Blocks(theme='bethecloud/storj_theme').queue()
|
| 202 |
+
with block:
|
| 203 |
+
with gr.Row():
|
| 204 |
+
gr.Markdown("## AnyControl Demo")
|
| 205 |
+
gr.Markdown("---")
|
| 206 |
+
with gr.Row():
|
| 207 |
+
with gr.Column(scale=1):
|
| 208 |
+
with gr.Blocks():
|
| 209 |
+
s = gr.Slider(1, max_conditions, value=1, step=1, label="How many conditions to upload:")
|
| 210 |
+
imageboxes = []
|
| 211 |
+
for i in range(max_conditions):
|
| 212 |
+
if i==0:
|
| 213 |
+
with gr.Row():
|
| 214 |
+
img = gr.Image(visible=True, sources=['upload'], type="numpy", label='Condition 1', interactive=True, scale=3, height=200)
|
| 215 |
+
typ = gr.Dropdown(condition_types, visible=True, interactive=True, label="type", scale=1)
|
| 216 |
+
else:
|
| 217 |
+
with gr.Row():
|
| 218 |
+
img = gr.Image(visible=False, sources=['upload'], type="numpy", label=f'Condition {i+1}', scale=3, height=200)
|
| 219 |
+
typ = gr.Dropdown(condition_types, visible=False, interactive=True, label="type", scale=1)
|
| 220 |
+
imageboxes.append(img)
|
| 221 |
+
imageboxes.append(typ)
|
| 222 |
+
s.change(variable_image_outputs, s, imageboxes)
|
| 223 |
+
with gr.Column(scale=2):
|
| 224 |
+
with gr.Row():
|
| 225 |
+
prompt = gr.Textbox(label="Prompt")
|
| 226 |
+
with gr.Row():
|
| 227 |
+
with gr.Column():
|
| 228 |
+
with gr.Accordion("Advanced options", open=False):
|
| 229 |
+
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=4, step=1)
|
| 230 |
+
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64)
|
| 231 |
+
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1, step=0.01)
|
| 232 |
+
|
| 233 |
+
local_strength = gr.Slider(label="Local Strength", minimum=0, maximum=2, value=1, step=0.01)
|
| 234 |
+
global_strength = gr.Slider(label="Global Strength", minimum=0, maximum=2, value=1, step=0.01)
|
| 235 |
+
color_strength = gr.Slider(label="Color Strength", minimum=0, maximum=2, value=1, step=0.01)
|
| 236 |
+
|
| 237 |
+
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=50, step=1)
|
| 238 |
+
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=7.5, step=0.1)
|
| 239 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, value=42, step=1)
|
| 240 |
+
eta = gr.Number(label="Eta (DDIM)", value=0.0)
|
| 241 |
+
|
| 242 |
+
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
|
| 243 |
+
n_prompt = gr.Textbox(label="Negative Prompt",
|
| 244 |
+
value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
with gr.Row():
|
| 248 |
+
run_button = gr.Button(value="Run")
|
| 249 |
+
with gr.Row():
|
| 250 |
+
image_gallery = gr.Gallery(label='Generation', show_label=True, elem_id="gallery", columns=[4], rows=[1], height='auto', interactive=False)
|
| 251 |
+
with gr.Row():
|
| 252 |
+
cond_gallery = gr.Gallery(label='Condition', show_label=True, elem_id="gallery", columns=[4], rows=[1], height='auto', interactive=False)
|
| 253 |
+
|
| 254 |
+
inputs = [prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps,
|
| 255 |
+
strength, scale, seed, eta, local_strength, global_strength, color_strength] + imageboxes
|
| 256 |
+
run_button.click(fn=process, inputs=inputs, outputs=[image_gallery, cond_gallery])
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
# uncomment this block in case you need it
|
| 260 |
+
# os.environ['http_proxy'] = ''
|
| 261 |
+
# os.environ['https_proxy'] = ''
|
| 262 |
+
# os.environ['no_proxy'] = 'localhost,127.0.0.0/8,127.0.1.1'
|
| 263 |
+
# os.environ['HTTP_PROXY'] = ''
|
| 264 |
+
# os.environ['HTTPS_PROXY'] = ''
|
| 265 |
+
# os.environ['NO_PROXY'] = 'localhost,127.0.0.0/8,127.0.1.1'
|
| 266 |
+
# os.environ['TMPDIR'] = './tmpfiles'
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
block.launch(server_name='0.0.0.0', allowed_paths=["."], share=False)
|