import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM model_name = "cointegrated/rut5-base" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) def generate(text): inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_length=100) return tokenizer.decode(outputs[0], skip_special_tokens=True) demo = gr.Interface(fn=generate, inputs="text", outputs="text", title="RuT5 Demo") demo.launch()