Create mtcnn_detector.py
Browse files- mtcnn_detector.py +650 -0
mtcnn_detector.py
ADDED
|
@@ -0,0 +1,650 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 2 |
+
|
| 3 |
+
# coding: utf-8
|
| 4 |
+
import os
|
| 5 |
+
import mxnet as mx
|
| 6 |
+
import numpy as np
|
| 7 |
+
import math
|
| 8 |
+
import cv2
|
| 9 |
+
from multiprocessing import Pool
|
| 10 |
+
from itertools import repeat
|
| 11 |
+
from helper import nms, adjust_input, generate_bbox, detect_first_stage_warpper
|
| 12 |
+
try:
|
| 13 |
+
from itertools import izip as zip
|
| 14 |
+
except ImportError:
|
| 15 |
+
pass
|
| 16 |
+
|
| 17 |
+
class MtcnnDetector(object):
|
| 18 |
+
"""
|
| 19 |
+
Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Neural Networks
|
| 20 |
+
see https://github.com/kpzhang93/MTCNN_face_detection_alignment
|
| 21 |
+
this is a mxnet version
|
| 22 |
+
"""
|
| 23 |
+
def __init__(self,
|
| 24 |
+
model_folder='.',
|
| 25 |
+
minsize = 20,
|
| 26 |
+
threshold = [0.6, 0.7, 0.8],
|
| 27 |
+
factor = 0.709,
|
| 28 |
+
num_worker = 1,
|
| 29 |
+
accurate_landmark = False,
|
| 30 |
+
ctx=mx.cpu()):
|
| 31 |
+
"""
|
| 32 |
+
Initialize the detector
|
| 33 |
+
|
| 34 |
+
Parameters:
|
| 35 |
+
----------
|
| 36 |
+
model_folder : string
|
| 37 |
+
path for the models
|
| 38 |
+
minsize : float number
|
| 39 |
+
minimal face to detect
|
| 40 |
+
threshold : float number
|
| 41 |
+
detect threshold for 3 stages
|
| 42 |
+
factor: float number
|
| 43 |
+
scale factor for image pyramid
|
| 44 |
+
num_worker: int number
|
| 45 |
+
number of processes we use for first stage
|
| 46 |
+
accurate_landmark: bool
|
| 47 |
+
use accurate landmark localization or not
|
| 48 |
+
|
| 49 |
+
"""
|
| 50 |
+
self.num_worker = num_worker
|
| 51 |
+
self.accurate_landmark = accurate_landmark
|
| 52 |
+
|
| 53 |
+
# load 4 models from folder
|
| 54 |
+
models = ['det1', 'det2', 'det3','det4']
|
| 55 |
+
models = [ os.path.join(model_folder, f) for f in models]
|
| 56 |
+
|
| 57 |
+
self.PNets = []
|
| 58 |
+
for i in range(num_worker):
|
| 59 |
+
workner_net = mx.model.FeedForward.load(models[0], 1, ctx=ctx)
|
| 60 |
+
self.PNets.append(workner_net)
|
| 61 |
+
|
| 62 |
+
self.RNet = mx.model.FeedForward.load(models[1], 1, ctx=ctx)
|
| 63 |
+
self.ONet = mx.model.FeedForward.load(models[2], 1, ctx=ctx)
|
| 64 |
+
self.LNet = mx.model.FeedForward.load(models[3], 1, ctx=ctx)
|
| 65 |
+
|
| 66 |
+
self.minsize = float(minsize)
|
| 67 |
+
self.factor = float(factor)
|
| 68 |
+
self.threshold = threshold
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def convert_to_square(self, bbox):
|
| 72 |
+
"""
|
| 73 |
+
convert bbox to square
|
| 74 |
+
|
| 75 |
+
Parameters:
|
| 76 |
+
----------
|
| 77 |
+
bbox: numpy array , shape n x 5
|
| 78 |
+
input bbox
|
| 79 |
+
|
| 80 |
+
Returns:
|
| 81 |
+
-------
|
| 82 |
+
square bbox
|
| 83 |
+
"""
|
| 84 |
+
square_bbox = bbox.copy()
|
| 85 |
+
|
| 86 |
+
h = bbox[:, 3] - bbox[:, 1] + 1
|
| 87 |
+
w = bbox[:, 2] - bbox[:, 0] + 1
|
| 88 |
+
max_side = np.maximum(h,w)
|
| 89 |
+
square_bbox[:, 0] = bbox[:, 0] + w*0.5 - max_side*0.5
|
| 90 |
+
square_bbox[:, 1] = bbox[:, 1] + h*0.5 - max_side*0.5
|
| 91 |
+
square_bbox[:, 2] = square_bbox[:, 0] + max_side - 1
|
| 92 |
+
square_bbox[:, 3] = square_bbox[:, 1] + max_side - 1
|
| 93 |
+
return square_bbox
|
| 94 |
+
|
| 95 |
+
def calibrate_box(self, bbox, reg):
|
| 96 |
+
"""
|
| 97 |
+
calibrate bboxes
|
| 98 |
+
|
| 99 |
+
Parameters:
|
| 100 |
+
----------
|
| 101 |
+
bbox: numpy array, shape n x 5
|
| 102 |
+
input bboxes
|
| 103 |
+
reg: numpy array, shape n x 4
|
| 104 |
+
bboxex adjustment
|
| 105 |
+
|
| 106 |
+
Returns:
|
| 107 |
+
-------
|
| 108 |
+
bboxes after refinement
|
| 109 |
+
|
| 110 |
+
"""
|
| 111 |
+
w = bbox[:, 2] - bbox[:, 0] + 1
|
| 112 |
+
w = np.expand_dims(w, 1)
|
| 113 |
+
h = bbox[:, 3] - bbox[:, 1] + 1
|
| 114 |
+
h = np.expand_dims(h, 1)
|
| 115 |
+
reg_m = np.hstack([w, h, w, h])
|
| 116 |
+
aug = reg_m * reg
|
| 117 |
+
bbox[:, 0:4] = bbox[:, 0:4] + aug
|
| 118 |
+
return bbox
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def pad(self, bboxes, w, h):
|
| 122 |
+
"""
|
| 123 |
+
pad the the bboxes, alse restrict the size of it
|
| 124 |
+
|
| 125 |
+
Parameters:
|
| 126 |
+
----------
|
| 127 |
+
bboxes: numpy array, n x 5
|
| 128 |
+
input bboxes
|
| 129 |
+
w: float number
|
| 130 |
+
width of the input image
|
| 131 |
+
h: float number
|
| 132 |
+
height of the input image
|
| 133 |
+
Returns :
|
| 134 |
+
------s
|
| 135 |
+
dy, dx : numpy array, n x 1
|
| 136 |
+
start point of the bbox in target image
|
| 137 |
+
edy, edx : numpy array, n x 1
|
| 138 |
+
end point of the bbox in target image
|
| 139 |
+
y, x : numpy array, n x 1
|
| 140 |
+
start point of the bbox in original image
|
| 141 |
+
ex, ex : numpy array, n x 1
|
| 142 |
+
end point of the bbox in original image
|
| 143 |
+
tmph, tmpw: numpy array, n x 1
|
| 144 |
+
height and width of the bbox
|
| 145 |
+
|
| 146 |
+
"""
|
| 147 |
+
tmpw, tmph = bboxes[:, 2] - bboxes[:, 0] + 1, bboxes[:, 3] - bboxes[:, 1] + 1
|
| 148 |
+
num_box = bboxes.shape[0]
|
| 149 |
+
|
| 150 |
+
dx , dy= np.zeros((num_box, )), np.zeros((num_box, ))
|
| 151 |
+
edx, edy = tmpw.copy()-1, tmph.copy()-1
|
| 152 |
+
|
| 153 |
+
x, y, ex, ey = bboxes[:, 0], bboxes[:, 1], bboxes[:, 2], bboxes[:, 3]
|
| 154 |
+
|
| 155 |
+
tmp_index = np.where(ex > w-1)
|
| 156 |
+
edx[tmp_index] = tmpw[tmp_index] + w - 2 - ex[tmp_index]
|
| 157 |
+
ex[tmp_index] = w - 1
|
| 158 |
+
|
| 159 |
+
tmp_index = np.where(ey > h-1)
|
| 160 |
+
edy[tmp_index] = tmph[tmp_index] + h - 2 - ey[tmp_index]
|
| 161 |
+
ey[tmp_index] = h - 1
|
| 162 |
+
|
| 163 |
+
tmp_index = np.where(x < 0)
|
| 164 |
+
dx[tmp_index] = 0 - x[tmp_index]
|
| 165 |
+
x[tmp_index] = 0
|
| 166 |
+
|
| 167 |
+
tmp_index = np.where(y < 0)
|
| 168 |
+
dy[tmp_index] = 0 - y[tmp_index]
|
| 169 |
+
y[tmp_index] = 0
|
| 170 |
+
|
| 171 |
+
return_list = [dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph]
|
| 172 |
+
return_list = [item.astype(np.int32) for item in return_list]
|
| 173 |
+
|
| 174 |
+
return return_list
|
| 175 |
+
|
| 176 |
+
def slice_index(self, number):
|
| 177 |
+
"""
|
| 178 |
+
slice the index into (n,n,m), m < n
|
| 179 |
+
Parameters:
|
| 180 |
+
----------
|
| 181 |
+
number: int number
|
| 182 |
+
number
|
| 183 |
+
"""
|
| 184 |
+
def chunks(l, n):
|
| 185 |
+
"""Yield successive n-sized chunks from l."""
|
| 186 |
+
for i in range(0, len(l), n):
|
| 187 |
+
yield l[i:i + n]
|
| 188 |
+
num_list = range(number)
|
| 189 |
+
return list(chunks(num_list, self.num_worker))
|
| 190 |
+
|
| 191 |
+
def detect_face_limited(self, img, det_type=2):
|
| 192 |
+
height, width, _ = img.shape
|
| 193 |
+
if det_type>=2:
|
| 194 |
+
total_boxes = np.array( [ [0.0, 0.0, img.shape[1], img.shape[0], 0.9] ] ,dtype=np.float32)
|
| 195 |
+
num_box = total_boxes.shape[0]
|
| 196 |
+
|
| 197 |
+
# pad the bbox
|
| 198 |
+
[dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = self.pad(total_boxes, width, height)
|
| 199 |
+
# (3, 24, 24) is the input shape for RNet
|
| 200 |
+
input_buf = np.zeros((num_box, 3, 24, 24), dtype=np.float32)
|
| 201 |
+
|
| 202 |
+
for i in range(num_box):
|
| 203 |
+
tmp = np.zeros((tmph[i], tmpw[i], 3), dtype=np.uint8)
|
| 204 |
+
tmp[dy[i]:edy[i]+1, dx[i]:edx[i]+1, :] = img[y[i]:ey[i]+1, x[i]:ex[i]+1, :]
|
| 205 |
+
input_buf[i, :, :, :] = adjust_input(cv2.resize(tmp, (24, 24)))
|
| 206 |
+
|
| 207 |
+
output = self.RNet.predict(input_buf)
|
| 208 |
+
|
| 209 |
+
# filter the total_boxes with threshold
|
| 210 |
+
passed = np.where(output[1][:, 1] > self.threshold[1])
|
| 211 |
+
total_boxes = total_boxes[passed]
|
| 212 |
+
|
| 213 |
+
if total_boxes.size == 0:
|
| 214 |
+
return None
|
| 215 |
+
|
| 216 |
+
total_boxes[:, 4] = output[1][passed, 1].reshape((-1,))
|
| 217 |
+
reg = output[0][passed]
|
| 218 |
+
|
| 219 |
+
# nms
|
| 220 |
+
pick = nms(total_boxes, 0.7, 'Union')
|
| 221 |
+
total_boxes = total_boxes[pick]
|
| 222 |
+
total_boxes = self.calibrate_box(total_boxes, reg[pick])
|
| 223 |
+
total_boxes = self.convert_to_square(total_boxes)
|
| 224 |
+
total_boxes[:, 0:4] = np.round(total_boxes[:, 0:4])
|
| 225 |
+
else:
|
| 226 |
+
total_boxes = np.array( [ [0.0, 0.0, img.shape[1], img.shape[0], 0.9] ] ,dtype=np.float32)
|
| 227 |
+
num_box = total_boxes.shape[0]
|
| 228 |
+
[dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = self.pad(total_boxes, width, height)
|
| 229 |
+
# (3, 48, 48) is the input shape for ONet
|
| 230 |
+
input_buf = np.zeros((num_box, 3, 48, 48), dtype=np.float32)
|
| 231 |
+
|
| 232 |
+
for i in range(num_box):
|
| 233 |
+
tmp = np.zeros((tmph[i], tmpw[i], 3), dtype=np.float32)
|
| 234 |
+
tmp[dy[i]:edy[i]+1, dx[i]:edx[i]+1, :] = img[y[i]:ey[i]+1, x[i]:ex[i]+1, :]
|
| 235 |
+
input_buf[i, :, :, :] = adjust_input(cv2.resize(tmp, (48, 48)))
|
| 236 |
+
|
| 237 |
+
output = self.ONet.predict(input_buf)
|
| 238 |
+
|
| 239 |
+
# filter the total_boxes with threshold
|
| 240 |
+
passed = np.where(output[2][:, 1] > self.threshold[2])
|
| 241 |
+
total_boxes = total_boxes[passed]
|
| 242 |
+
|
| 243 |
+
if total_boxes.size == 0:
|
| 244 |
+
return None
|
| 245 |
+
|
| 246 |
+
total_boxes[:, 4] = output[2][passed, 1].reshape((-1,))
|
| 247 |
+
reg = output[1][passed]
|
| 248 |
+
points = output[0][passed]
|
| 249 |
+
|
| 250 |
+
# compute landmark points
|
| 251 |
+
bbw = total_boxes[:, 2] - total_boxes[:, 0] + 1
|
| 252 |
+
bbh = total_boxes[:, 3] - total_boxes[:, 1] + 1
|
| 253 |
+
points[:, 0:5] = np.expand_dims(total_boxes[:, 0], 1) + np.expand_dims(bbw, 1) * points[:, 0:5]
|
| 254 |
+
points[:, 5:10] = np.expand_dims(total_boxes[:, 1], 1) + np.expand_dims(bbh, 1) * points[:, 5:10]
|
| 255 |
+
|
| 256 |
+
# nms
|
| 257 |
+
total_boxes = self.calibrate_box(total_boxes, reg)
|
| 258 |
+
pick = nms(total_boxes, 0.7, 'Min')
|
| 259 |
+
total_boxes = total_boxes[pick]
|
| 260 |
+
points = points[pick]
|
| 261 |
+
|
| 262 |
+
if not self.accurate_landmark:
|
| 263 |
+
return total_boxes, points
|
| 264 |
+
|
| 265 |
+
#############################################
|
| 266 |
+
# extended stage
|
| 267 |
+
#############################################
|
| 268 |
+
num_box = total_boxes.shape[0]
|
| 269 |
+
patchw = np.maximum(total_boxes[:, 2]-total_boxes[:, 0]+1, total_boxes[:, 3]-total_boxes[:, 1]+1)
|
| 270 |
+
patchw = np.round(patchw*0.25)
|
| 271 |
+
|
| 272 |
+
# make it even
|
| 273 |
+
patchw[np.where(np.mod(patchw,2) == 1)] += 1
|
| 274 |
+
|
| 275 |
+
input_buf = np.zeros((num_box, 15, 24, 24), dtype=np.float32)
|
| 276 |
+
for i in range(5):
|
| 277 |
+
x, y = points[:, i], points[:, i+5]
|
| 278 |
+
x, y = np.round(x-0.5*patchw), np.round(y-0.5*patchw)
|
| 279 |
+
[dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = self.pad(np.vstack([x, y, x+patchw-1, y+patchw-1]).T,
|
| 280 |
+
width,
|
| 281 |
+
height)
|
| 282 |
+
for j in range(num_box):
|
| 283 |
+
tmpim = np.zeros((tmpw[j], tmpw[j], 3), dtype=np.float32)
|
| 284 |
+
tmpim[dy[j]:edy[j]+1, dx[j]:edx[j]+1, :] = img[y[j]:ey[j]+1, x[j]:ex[j]+1, :]
|
| 285 |
+
input_buf[j, i*3:i*3+3, :, :] = adjust_input(cv2.resize(tmpim, (24, 24)))
|
| 286 |
+
|
| 287 |
+
output = self.LNet.predict(input_buf)
|
| 288 |
+
|
| 289 |
+
pointx = np.zeros((num_box, 5))
|
| 290 |
+
pointy = np.zeros((num_box, 5))
|
| 291 |
+
|
| 292 |
+
for k in range(5):
|
| 293 |
+
# do not make a large movement
|
| 294 |
+
tmp_index = np.where(np.abs(output[k]-0.5) > 0.35)
|
| 295 |
+
output[k][tmp_index[0]] = 0.5
|
| 296 |
+
|
| 297 |
+
pointx[:, k] = np.round(points[:, k] - 0.5*patchw) + output[k][:, 0]*patchw
|
| 298 |
+
pointy[:, k] = np.round(points[:, k+5] - 0.5*patchw) + output[k][:, 1]*patchw
|
| 299 |
+
|
| 300 |
+
points = np.hstack([pointx, pointy])
|
| 301 |
+
points = points.astype(np.int32)
|
| 302 |
+
|
| 303 |
+
return total_boxes, points
|
| 304 |
+
|
| 305 |
+
def detect_face(self, img, det_type=0):
|
| 306 |
+
"""
|
| 307 |
+
detect face over img
|
| 308 |
+
Parameters:
|
| 309 |
+
----------
|
| 310 |
+
img: numpy array, bgr order of shape (1, 3, n, m)
|
| 311 |
+
input image
|
| 312 |
+
Retures:
|
| 313 |
+
-------
|
| 314 |
+
bboxes: numpy array, n x 5 (x1,y2,x2,y2,score)
|
| 315 |
+
bboxes
|
| 316 |
+
points: numpy array, n x 10 (x1, x2 ... x5, y1, y2 ..y5)
|
| 317 |
+
landmarks
|
| 318 |
+
"""
|
| 319 |
+
|
| 320 |
+
# check input
|
| 321 |
+
height, width, _ = img.shape
|
| 322 |
+
if det_type==0:
|
| 323 |
+
MIN_DET_SIZE = 12
|
| 324 |
+
|
| 325 |
+
if img is None:
|
| 326 |
+
return None
|
| 327 |
+
|
| 328 |
+
# only works for color image
|
| 329 |
+
if len(img.shape) != 3:
|
| 330 |
+
return None
|
| 331 |
+
|
| 332 |
+
# detected boxes
|
| 333 |
+
total_boxes = []
|
| 334 |
+
|
| 335 |
+
minl = min( height, width)
|
| 336 |
+
|
| 337 |
+
# get all the valid scales
|
| 338 |
+
scales = []
|
| 339 |
+
m = MIN_DET_SIZE/self.minsize
|
| 340 |
+
minl *= m
|
| 341 |
+
factor_count = 0
|
| 342 |
+
while minl > MIN_DET_SIZE:
|
| 343 |
+
scales.append(m*self.factor**factor_count)
|
| 344 |
+
minl *= self.factor
|
| 345 |
+
factor_count += 1
|
| 346 |
+
|
| 347 |
+
#############################################
|
| 348 |
+
# first stage
|
| 349 |
+
#############################################
|
| 350 |
+
|
| 351 |
+
sliced_index = self.slice_index(len(scales))
|
| 352 |
+
total_boxes = []
|
| 353 |
+
for batch in sliced_index:
|
| 354 |
+
local_boxes = map( detect_first_stage_warpper, \
|
| 355 |
+
zip(repeat(img), self.PNets[:len(batch)], [scales[i] for i in batch], repeat(self.threshold[0])) )
|
| 356 |
+
total_boxes.extend(local_boxes)
|
| 357 |
+
|
| 358 |
+
# remove the Nones
|
| 359 |
+
total_boxes = [ i for i in total_boxes if i is not None]
|
| 360 |
+
|
| 361 |
+
if len(total_boxes) == 0:
|
| 362 |
+
return None
|
| 363 |
+
|
| 364 |
+
total_boxes = np.vstack(total_boxes)
|
| 365 |
+
|
| 366 |
+
if total_boxes.size == 0:
|
| 367 |
+
return None
|
| 368 |
+
|
| 369 |
+
# merge the detection from first stage
|
| 370 |
+
pick = nms(total_boxes[:, 0:5], 0.7, 'Union')
|
| 371 |
+
total_boxes = total_boxes[pick]
|
| 372 |
+
|
| 373 |
+
bbw = total_boxes[:, 2] - total_boxes[:, 0] + 1
|
| 374 |
+
bbh = total_boxes[:, 3] - total_boxes[:, 1] + 1
|
| 375 |
+
|
| 376 |
+
# refine the bboxes
|
| 377 |
+
total_boxes = np.vstack([total_boxes[:, 0]+total_boxes[:, 5] * bbw,
|
| 378 |
+
total_boxes[:, 1]+total_boxes[:, 6] * bbh,
|
| 379 |
+
total_boxes[:, 2]+total_boxes[:, 7] * bbw,
|
| 380 |
+
total_boxes[:, 3]+total_boxes[:, 8] * bbh,
|
| 381 |
+
total_boxes[:, 4]
|
| 382 |
+
])
|
| 383 |
+
|
| 384 |
+
total_boxes = total_boxes.T
|
| 385 |
+
total_boxes = self.convert_to_square(total_boxes)
|
| 386 |
+
total_boxes[:, 0:4] = np.round(total_boxes[:, 0:4])
|
| 387 |
+
else:
|
| 388 |
+
total_boxes = np.array( [ [0.0, 0.0, img.shape[1], img.shape[0], 0.9] ] ,dtype=np.float32)
|
| 389 |
+
|
| 390 |
+
#############################################
|
| 391 |
+
# second stage
|
| 392 |
+
#############################################
|
| 393 |
+
num_box = total_boxes.shape[0]
|
| 394 |
+
|
| 395 |
+
# pad the bbox
|
| 396 |
+
[dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = self.pad(total_boxes, width, height)
|
| 397 |
+
# (3, 24, 24) is the input shape for RNet
|
| 398 |
+
input_buf = np.zeros((num_box, 3, 24, 24), dtype=np.float32)
|
| 399 |
+
|
| 400 |
+
for i in range(num_box):
|
| 401 |
+
tmp = np.zeros((tmph[i], tmpw[i], 3), dtype=np.uint8)
|
| 402 |
+
tmp[dy[i]:edy[i]+1, dx[i]:edx[i]+1, :] = img[y[i]:ey[i]+1, x[i]:ex[i]+1, :]
|
| 403 |
+
input_buf[i, :, :, :] = adjust_input(cv2.resize(tmp, (24, 24)))
|
| 404 |
+
|
| 405 |
+
output = self.RNet.predict(input_buf)
|
| 406 |
+
|
| 407 |
+
# filter the total_boxes with threshold
|
| 408 |
+
passed = np.where(output[1][:, 1] > self.threshold[1])
|
| 409 |
+
total_boxes = total_boxes[passed]
|
| 410 |
+
|
| 411 |
+
if total_boxes.size == 0:
|
| 412 |
+
return None
|
| 413 |
+
|
| 414 |
+
total_boxes[:, 4] = output[1][passed, 1].reshape((-1,))
|
| 415 |
+
reg = output[0][passed]
|
| 416 |
+
|
| 417 |
+
# nms
|
| 418 |
+
pick = nms(total_boxes, 0.7, 'Union')
|
| 419 |
+
total_boxes = total_boxes[pick]
|
| 420 |
+
total_boxes = self.calibrate_box(total_boxes, reg[pick])
|
| 421 |
+
total_boxes = self.convert_to_square(total_boxes)
|
| 422 |
+
total_boxes[:, 0:4] = np.round(total_boxes[:, 0:4])
|
| 423 |
+
|
| 424 |
+
#############################################
|
| 425 |
+
# third stage
|
| 426 |
+
#############################################
|
| 427 |
+
num_box = total_boxes.shape[0]
|
| 428 |
+
|
| 429 |
+
# pad the bbox
|
| 430 |
+
[dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = self.pad(total_boxes, width, height)
|
| 431 |
+
# (3, 48, 48) is the input shape for ONet
|
| 432 |
+
input_buf = np.zeros((num_box, 3, 48, 48), dtype=np.float32)
|
| 433 |
+
|
| 434 |
+
for i in range(num_box):
|
| 435 |
+
tmp = np.zeros((tmph[i], tmpw[i], 3), dtype=np.float32)
|
| 436 |
+
tmp[dy[i]:edy[i]+1, dx[i]:edx[i]+1, :] = img[y[i]:ey[i]+1, x[i]:ex[i]+1, :]
|
| 437 |
+
input_buf[i, :, :, :] = adjust_input(cv2.resize(tmp, (48, 48)))
|
| 438 |
+
|
| 439 |
+
output = self.ONet.predict(input_buf)
|
| 440 |
+
|
| 441 |
+
# filter the total_boxes with threshold
|
| 442 |
+
passed = np.where(output[2][:, 1] > self.threshold[2])
|
| 443 |
+
total_boxes = total_boxes[passed]
|
| 444 |
+
|
| 445 |
+
if total_boxes.size == 0:
|
| 446 |
+
return None
|
| 447 |
+
|
| 448 |
+
total_boxes[:, 4] = output[2][passed, 1].reshape((-1,))
|
| 449 |
+
reg = output[1][passed]
|
| 450 |
+
points = output[0][passed]
|
| 451 |
+
|
| 452 |
+
# compute landmark points
|
| 453 |
+
bbw = total_boxes[:, 2] - total_boxes[:, 0] + 1
|
| 454 |
+
bbh = total_boxes[:, 3] - total_boxes[:, 1] + 1
|
| 455 |
+
points[:, 0:5] = np.expand_dims(total_boxes[:, 0], 1) + np.expand_dims(bbw, 1) * points[:, 0:5]
|
| 456 |
+
points[:, 5:10] = np.expand_dims(total_boxes[:, 1], 1) + np.expand_dims(bbh, 1) * points[:, 5:10]
|
| 457 |
+
|
| 458 |
+
# nms
|
| 459 |
+
total_boxes = self.calibrate_box(total_boxes, reg)
|
| 460 |
+
pick = nms(total_boxes, 0.7, 'Min')
|
| 461 |
+
total_boxes = total_boxes[pick]
|
| 462 |
+
points = points[pick]
|
| 463 |
+
|
| 464 |
+
if not self.accurate_landmark:
|
| 465 |
+
return total_boxes, points
|
| 466 |
+
|
| 467 |
+
#############################################
|
| 468 |
+
# extended stage
|
| 469 |
+
#############################################
|
| 470 |
+
num_box = total_boxes.shape[0]
|
| 471 |
+
patchw = np.maximum(total_boxes[:, 2]-total_boxes[:, 0]+1, total_boxes[:, 3]-total_boxes[:, 1]+1)
|
| 472 |
+
patchw = np.round(patchw*0.25)
|
| 473 |
+
|
| 474 |
+
# make it even
|
| 475 |
+
patchw[np.where(np.mod(patchw,2) == 1)] += 1
|
| 476 |
+
|
| 477 |
+
input_buf = np.zeros((num_box, 15, 24, 24), dtype=np.float32)
|
| 478 |
+
for i in range(5):
|
| 479 |
+
x, y = points[:, i], points[:, i+5]
|
| 480 |
+
x, y = np.round(x-0.5*patchw), np.round(y-0.5*patchw)
|
| 481 |
+
[dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = self.pad(np.vstack([x, y, x+patchw-1, y+patchw-1]).T,
|
| 482 |
+
width,
|
| 483 |
+
height)
|
| 484 |
+
for j in range(num_box):
|
| 485 |
+
tmpim = np.zeros((tmpw[j], tmpw[j], 3), dtype=np.float32)
|
| 486 |
+
tmpim[dy[j]:edy[j]+1, dx[j]:edx[j]+1, :] = img[y[j]:ey[j]+1, x[j]:ex[j]+1, :]
|
| 487 |
+
input_buf[j, i*3:i*3+3, :, :] = adjust_input(cv2.resize(tmpim, (24, 24)))
|
| 488 |
+
|
| 489 |
+
output = self.LNet.predict(input_buf)
|
| 490 |
+
|
| 491 |
+
pointx = np.zeros((num_box, 5))
|
| 492 |
+
pointy = np.zeros((num_box, 5))
|
| 493 |
+
|
| 494 |
+
for k in range(5):
|
| 495 |
+
# do not make a large movement
|
| 496 |
+
tmp_index = np.where(np.abs(output[k]-0.5) > 0.35)
|
| 497 |
+
output[k][tmp_index[0]] = 0.5
|
| 498 |
+
|
| 499 |
+
pointx[:, k] = np.round(points[:, k] - 0.5*patchw) + output[k][:, 0]*patchw
|
| 500 |
+
pointy[:, k] = np.round(points[:, k+5] - 0.5*patchw) + output[k][:, 1]*patchw
|
| 501 |
+
|
| 502 |
+
points = np.hstack([pointx, pointy])
|
| 503 |
+
points = points.astype(np.int32)
|
| 504 |
+
|
| 505 |
+
return total_boxes, points
|
| 506 |
+
|
| 507 |
+
|
| 508 |
+
|
| 509 |
+
def list2colmatrix(self, pts_list):
|
| 510 |
+
"""
|
| 511 |
+
convert list to column matrix
|
| 512 |
+
Parameters:
|
| 513 |
+
----------
|
| 514 |
+
pts_list:
|
| 515 |
+
input list
|
| 516 |
+
Retures:
|
| 517 |
+
-------
|
| 518 |
+
colMat:
|
| 519 |
+
|
| 520 |
+
"""
|
| 521 |
+
assert len(pts_list) > 0
|
| 522 |
+
colMat = []
|
| 523 |
+
for i in range(len(pts_list)):
|
| 524 |
+
colMat.append(pts_list[i][0])
|
| 525 |
+
colMat.append(pts_list[i][1])
|
| 526 |
+
colMat = np.matrix(colMat).transpose()
|
| 527 |
+
return colMat
|
| 528 |
+
|
| 529 |
+
def find_tfrom_between_shapes(self, from_shape, to_shape):
|
| 530 |
+
"""
|
| 531 |
+
find transform between shapes
|
| 532 |
+
Parameters:
|
| 533 |
+
----------
|
| 534 |
+
from_shape:
|
| 535 |
+
to_shape:
|
| 536 |
+
Retures:
|
| 537 |
+
-------
|
| 538 |
+
tran_m:
|
| 539 |
+
tran_b:
|
| 540 |
+
"""
|
| 541 |
+
assert from_shape.shape[0] == to_shape.shape[0] and from_shape.shape[0] % 2 == 0
|
| 542 |
+
|
| 543 |
+
sigma_from = 0.0
|
| 544 |
+
sigma_to = 0.0
|
| 545 |
+
cov = np.matrix([[0.0, 0.0], [0.0, 0.0]])
|
| 546 |
+
|
| 547 |
+
# compute the mean and cov
|
| 548 |
+
from_shape_points = from_shape.reshape(from_shape.shape[0]/2, 2)
|
| 549 |
+
to_shape_points = to_shape.reshape(to_shape.shape[0]/2, 2)
|
| 550 |
+
mean_from = from_shape_points.mean(axis=0)
|
| 551 |
+
mean_to = to_shape_points.mean(axis=0)
|
| 552 |
+
|
| 553 |
+
for i in range(from_shape_points.shape[0]):
|
| 554 |
+
temp_dis = np.linalg.norm(from_shape_points[i] - mean_from)
|
| 555 |
+
sigma_from += temp_dis * temp_dis
|
| 556 |
+
temp_dis = np.linalg.norm(to_shape_points[i] - mean_to)
|
| 557 |
+
sigma_to += temp_dis * temp_dis
|
| 558 |
+
cov += (to_shape_points[i].transpose() - mean_to.transpose()) * (from_shape_points[i] - mean_from)
|
| 559 |
+
|
| 560 |
+
sigma_from = sigma_from / to_shape_points.shape[0]
|
| 561 |
+
sigma_to = sigma_to / to_shape_points.shape[0]
|
| 562 |
+
cov = cov / to_shape_points.shape[0]
|
| 563 |
+
|
| 564 |
+
# compute the affine matrix
|
| 565 |
+
s = np.matrix([[1.0, 0.0], [0.0, 1.0]])
|
| 566 |
+
u, d, vt = np.linalg.svd(cov)
|
| 567 |
+
|
| 568 |
+
if np.linalg.det(cov) < 0:
|
| 569 |
+
if d[1] < d[0]:
|
| 570 |
+
s[1, 1] = -1
|
| 571 |
+
else:
|
| 572 |
+
s[0, 0] = -1
|
| 573 |
+
r = u * s * vt
|
| 574 |
+
c = 1.0
|
| 575 |
+
if sigma_from != 0:
|
| 576 |
+
c = 1.0 / sigma_from * np.trace(np.diag(d) * s)
|
| 577 |
+
|
| 578 |
+
tran_b = mean_to.transpose() - c * r * mean_from.transpose()
|
| 579 |
+
tran_m = c * r
|
| 580 |
+
|
| 581 |
+
return tran_m, tran_b
|
| 582 |
+
|
| 583 |
+
def extract_image_chips(self, img, points, desired_size=256, padding=0):
|
| 584 |
+
"""
|
| 585 |
+
crop and align face
|
| 586 |
+
Parameters:
|
| 587 |
+
----------
|
| 588 |
+
img: numpy array, bgr order of shape (1, 3, n, m)
|
| 589 |
+
input image
|
| 590 |
+
points: numpy array, n x 10 (x1, x2 ... x5, y1, y2 ..y5)
|
| 591 |
+
desired_size: default 256
|
| 592 |
+
padding: default 0
|
| 593 |
+
Retures:
|
| 594 |
+
-------
|
| 595 |
+
crop_imgs: list, n
|
| 596 |
+
cropped and aligned faces
|
| 597 |
+
"""
|
| 598 |
+
crop_imgs = []
|
| 599 |
+
for p in points:
|
| 600 |
+
shape =[]
|
| 601 |
+
for k in range(len(p)/2):
|
| 602 |
+
shape.append(p[k])
|
| 603 |
+
shape.append(p[k+5])
|
| 604 |
+
|
| 605 |
+
if padding > 0:
|
| 606 |
+
padding = padding
|
| 607 |
+
else:
|
| 608 |
+
padding = 0
|
| 609 |
+
# average positions of face points
|
| 610 |
+
mean_face_shape_x = [0.224152, 0.75610125, 0.490127, 0.254149, 0.726104]
|
| 611 |
+
mean_face_shape_y = [0.2119465, 0.2119465, 0.628106, 0.780233, 0.780233]
|
| 612 |
+
|
| 613 |
+
from_points = []
|
| 614 |
+
to_points = []
|
| 615 |
+
|
| 616 |
+
for i in range(len(shape)/2):
|
| 617 |
+
x = (padding + mean_face_shape_x[i]) / (2 * padding + 1) * desired_size
|
| 618 |
+
y = (padding + mean_face_shape_y[i]) / (2 * padding + 1) * desired_size
|
| 619 |
+
to_points.append([x, y])
|
| 620 |
+
from_points.append([shape[2*i], shape[2*i+1]])
|
| 621 |
+
|
| 622 |
+
# convert the points to Mat
|
| 623 |
+
from_mat = self.list2colmatrix(from_points)
|
| 624 |
+
to_mat = self.list2colmatrix(to_points)
|
| 625 |
+
|
| 626 |
+
# compute the similar transfrom
|
| 627 |
+
tran_m, tran_b = self.find_tfrom_between_shapes(from_mat, to_mat)
|
| 628 |
+
|
| 629 |
+
probe_vec = np.matrix([1.0, 0.0]).transpose()
|
| 630 |
+
probe_vec = tran_m * probe_vec
|
| 631 |
+
|
| 632 |
+
scale = np.linalg.norm(probe_vec)
|
| 633 |
+
angle = 180.0 / math.pi * math.atan2(probe_vec[1, 0], probe_vec[0, 0])
|
| 634 |
+
|
| 635 |
+
from_center = [(shape[0]+shape[2])/2.0, (shape[1]+shape[3])/2.0]
|
| 636 |
+
to_center = [0, 0]
|
| 637 |
+
to_center[1] = desired_size * 0.4
|
| 638 |
+
to_center[0] = desired_size * 0.5
|
| 639 |
+
|
| 640 |
+
ex = to_center[0] - from_center[0]
|
| 641 |
+
ey = to_center[1] - from_center[1]
|
| 642 |
+
|
| 643 |
+
rot_mat = cv2.getRotationMatrix2D((from_center[0], from_center[1]), -1*angle, scale)
|
| 644 |
+
rot_mat[0][2] += ex
|
| 645 |
+
rot_mat[1][2] += ey
|
| 646 |
+
|
| 647 |
+
chips = cv2.warpAffine(img, rot_mat, (desired_size, desired_size))
|
| 648 |
+
crop_imgs.append(chips)
|
| 649 |
+
|
| 650 |
+
return crop_imgs
|