Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Set result_paths_per_model as State
Browse files- app.py +15 -8
- src/results.py +4 -0
app.py
CHANGED
|
@@ -1,5 +1,3 @@
|
|
| 1 |
-
from functools import partial
|
| 2 |
-
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
import src.constants as constants
|
|
@@ -19,18 +17,15 @@ from src.results import (
|
|
| 19 |
display_loading_message_for_results,
|
| 20 |
display_results,
|
| 21 |
download_results,
|
| 22 |
-
|
| 23 |
load_results,
|
| 24 |
plot_results,
|
| 25 |
-
sort_result_paths_per_model,
|
| 26 |
update_load_results_component,
|
| 27 |
update_tasks_component,
|
| 28 |
)
|
| 29 |
|
| 30 |
|
| 31 |
# if __name__ == "__main__":
|
| 32 |
-
result_paths_per_model = sort_result_paths_per_model(fetch_result_paths())
|
| 33 |
-
load_results = partial(load_results, result_paths_per_model=result_paths_per_model)
|
| 34 |
|
| 35 |
with gr.Blocks(fill_height=True, fill_width=True) as demo:
|
| 36 |
gr.HTML("<h1 style='text-align: center;'>Compare Results of the π€ Open LLM Leaderboard</h1>")
|
|
@@ -43,7 +38,8 @@ with gr.Blocks(fill_height=True, fill_width=True) as demo:
|
|
| 43 |
"Check out the [documentation](https://huggingface.co/docs/leaderboards/open_llm_leaderboard/about) π to find explanations on the evaluations used, their configuration parameters and details on the input/outputs for the models."
|
| 44 |
)
|
| 45 |
with gr.Row():
|
| 46 |
-
model_ids = gr.Dropdown(
|
|
|
|
| 47 |
|
| 48 |
with gr.Row():
|
| 49 |
with gr.Tab("Results"):
|
|
@@ -113,6 +109,17 @@ with gr.Blocks(fill_height=True, fill_width=True) as demo:
|
|
| 113 |
details = gr.HTML()
|
| 114 |
details_dataframe = gr.State()
|
| 115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
gr.on(
|
| 117 |
triggers=[model_ids.input],
|
| 118 |
fn=update_load_results_component,
|
|
@@ -124,7 +131,7 @@ with gr.Blocks(fill_height=True, fill_width=True) as demo:
|
|
| 124 |
outputs=[results, configs],
|
| 125 |
).then(
|
| 126 |
fn=load_results,
|
| 127 |
-
inputs=model_ids,
|
| 128 |
outputs=results_dataframe,
|
| 129 |
).then(
|
| 130 |
fn=update_tasks_component,
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
import src.constants as constants
|
|
|
|
| 17 |
display_loading_message_for_results,
|
| 18 |
display_results,
|
| 19 |
download_results,
|
| 20 |
+
load_result_paths_per_model,
|
| 21 |
load_results,
|
| 22 |
plot_results,
|
|
|
|
| 23 |
update_load_results_component,
|
| 24 |
update_tasks_component,
|
| 25 |
)
|
| 26 |
|
| 27 |
|
| 28 |
# if __name__ == "__main__":
|
|
|
|
|
|
|
| 29 |
|
| 30 |
with gr.Blocks(fill_height=True, fill_width=True) as demo:
|
| 31 |
gr.HTML("<h1 style='text-align: center;'>Compare Results of the π€ Open LLM Leaderboard</h1>")
|
|
|
|
| 38 |
"Check out the [documentation](https://huggingface.co/docs/leaderboards/open_llm_leaderboard/about) π to find explanations on the evaluations used, their configuration parameters and details on the input/outputs for the models."
|
| 39 |
)
|
| 40 |
with gr.Row():
|
| 41 |
+
model_ids = gr.Dropdown(label="Models", multiselect=True)
|
| 42 |
+
result_paths_per_model = gr.State()
|
| 43 |
|
| 44 |
with gr.Row():
|
| 45 |
with gr.Tab("Results"):
|
|
|
|
| 109 |
details = gr.HTML()
|
| 110 |
details_dataframe = gr.State()
|
| 111 |
|
| 112 |
+
# DEMO:
|
| 113 |
+
demo.load(
|
| 114 |
+
fn=load_result_paths_per_model,
|
| 115 |
+
outputs=result_paths_per_model,
|
| 116 |
+
).then(
|
| 117 |
+
fn=lambda x: gr.Dropdown(choices=list(x.keys())),
|
| 118 |
+
inputs=result_paths_per_model,
|
| 119 |
+
outputs=model_ids,
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
# RESULTS:
|
| 123 |
gr.on(
|
| 124 |
triggers=[model_ids.input],
|
| 125 |
fn=update_load_results_component,
|
|
|
|
| 131 |
outputs=[results, configs],
|
| 132 |
).then(
|
| 133 |
fn=load_results,
|
| 134 |
+
inputs=[model_ids, result_paths_per_model],
|
| 135 |
outputs=results_dataframe,
|
| 136 |
).then(
|
| 137 |
fn=update_tasks_component,
|
src/results.py
CHANGED
|
@@ -10,6 +10,10 @@ import src.constants as constants
|
|
| 10 |
from src.hub import glob, load_json_file
|
| 11 |
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
def fetch_result_paths():
|
| 14 |
path = f"{constants.RESULTS_DATASET_ID}/**/**/*.json"
|
| 15 |
return glob(path)
|
|
|
|
| 10 |
from src.hub import glob, load_json_file
|
| 11 |
|
| 12 |
|
| 13 |
+
def load_result_paths_per_model():
|
| 14 |
+
return sort_result_paths_per_model(fetch_result_paths())
|
| 15 |
+
|
| 16 |
+
|
| 17 |
def fetch_result_paths():
|
| 18 |
path = f"{constants.RESULTS_DATASET_ID}/**/**/*.json"
|
| 19 |
return glob(path)
|